140
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influences of grain size and twin boundary on the tensile properties of nanocrystalline face-centered cubic Cu50Ni50 alloy

Pages 1256-1268 | Received 09 Nov 2021, Accepted 16 May 2022, Published online: 28 May 2022

References

  • Mazilova TI, Sadanov EV, Mikhailovskij IM. Tensile strength of graphene nanoribbons: An experimental approach. Materials Letters. 2019;242:17–19.
  • Quanjin M, Rejab MRM, Halim Q, et al. Experimental investigation of the tensile test using digital image correlation (DIC) method. Materials Today: Proceedings. 2020;27:757–763.
  • Damghani M, Ersoy N, Piorkowski M, et al. Experimental evaluation of residual tensile strength of hybrid composite aerospace materials after low velocity impact. Composites Part B: Engineering. 2019;179:107537.
  • Berlia R, Rasmussen P, Yang S, et al. Tensile behavior and inelastic strain recovery of Cu-Co nanolaminates. Scripta Materialia. 2021;197:113781.
  • Li D, Li C, Feng T, … Zhang Y. High-entropy Al0. 3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia. 2017;123:285–294.
  • He JY, Wang H, Huang HL, … Lu ZP. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia. 2016;102:187–196.
  • Zhang W, Xiao W, Wang F, et al. Development of heat resistant Mg-Zn-Al-based magnesium alloys by addition of La and Ca: microstructure and tensile properties. Journal of Alloys and Compounds. 2016;684:8–14.
  • Zaddach AJ, Scattergood RO, Koch CC. Tensile properties of low-stacking fault energy high-entropy alloys. Materials Science and Engineering: A. 2015;636:373–378.
  • Binder K, Horbach J, Kob W, et al. Molecular dynamics simulations. Journal of Physics: Condensed Matter. 2004;16(5):S429.
  • Tran AS, Fang TH. Void growth and coalescence in Cu-Ta metallic glasses using molecular dynamics. Computational Materials Science. 2019;168:144–153.
  • Tran AS, Fang TH. Dislocation interaction and fracture of Cu/Ta bilayer interfaces. Physica Scripta. 2019;94(9):095402.
  • Pan Z, Li Y, Wei Q. Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Materialia. 2008;56(14):3470–3480.
  • Ma GC, Fan JL, Gong HR. Mechanical behavior of Cu-W interface systems upon tensile loading from molecular dynamics simulations. Computational Materials Science. 2018;152:165–168.
  • Yang Y, Wang X, Zhang G, et al. Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading. Computational Materials Science. 2017;138:377–383.
  • Tran AS. Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study. Engineering Fracture Mechanics. 2020;239:107292.
  • Hashmi S. Reference module in materials science and materials engineering. Elsevier Amsterdam; 2015.
  • Haubold T. Nanocrystalline materials–structure and properties. In: Magnetic properties of fine particles. North-Holland Delta Series. Elsevier Amsterdam; 1992. p. 67–75.
  • Arzt EJAM. Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Materialia. 1998;46(16):5611–5626.
  • Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering: R: Reports. 1996;16(4):161–221.
  • Meyersm MA, Ashworth E. A model for the effect of grain size on the yield stress of metals. Philosophical Magazine A. 1982;46(5):737–759. `.
  • Würschum R, Herth S, Brossmann U. Diffusion in nanocrystalline metals and alloys—a status report. Advanced Engineering Materials. 2003;5(5):365–372.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in Materials Science. 2006;51(4):427–556.
  • Grössinger R, Sato R, Holzer D, et al. Properties, benefits, and application of nanocrystalline structures in magnetic materials. Advanced Engineering Materials. 2003;5(5):285–290.
  • Bhat AH, Dasan YK, Khan I, et al. Application of nanocrystalline cellulose: processing and biomedical applications. In: Cellulose-reinforced nanofibre composites; Production, Properties and Applications. Woodhead Publishing Cambridge; 2017. p. 215–240.
  • Madhusoodanan KN, Vimalkumar TV, Vijayakumar KP. Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis. Bulletin of Materials Science. 2015;38(3):583–591.
  • Banerjee MK. 2.1 fundamentals of heat treating metals and alloys. Comprehensive Materials Finishing. 2017: 1–49.
  • Varea A, Pellicer E, Pané S, et al. Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. International Journal of Electrochemical Science. 2012;7(2):1288–1302.
  • Brückner W, Macionczyk F, Reiss G. Mechanical properties of CuNi films. MRS Online Proceedings Library (OPL). 1996;436.
  • Rahman MH, Chowdhury EH, Hong S. Nature of creep deformation in nanocrystalline cupronickel alloy: A Molecular Dynamics study. Results in Materials. 2021;20(22):25.
  • Kasum K, Mulyana F, Zaenudin M, et al. Molecular dynamics simulation on creep mechanism of nanocrystalline Cu-Ni alloy. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat. 2021;18(1):67–74.
  • Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Materialia. 2010;58(6):2262–2270.
  • Jang D, Li X, Gao H, et al. Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnology. 2012;7(9):594–601.
  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5669):422–426.
  • Aurenhammer F. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR). 1991;23(3):345–405.
  • Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications. 2015;197:212–219.
  • Voort V, F G. Grain size measurement methods: A review and comparison. Microscopy and Microanalysis. 2013;19(S2):1760–1761.
  • Atomic LS, Simulator MMP. (2013). Lammps. http:/lammps.sandia.gov.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling and Simulation in Materials Science and Engineering. 2009;18(1):015012.
  • Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering. 2012;20(8):085007.
  • Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering. 2010;18(8):085001.
  • Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Materials Science Reports. 1993;9(7-8):251–310.
  • Tran AS, Fang TH. Size effect and interfacial strength in nanolaminated Cu/CuxTa100-x composites using molecular dynamics. Computational Materials Science. 2020;184:109890.
  • Gola A, Pastewka L. Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys. Modelling and Simulation in Materials Science and Engineering. 2018;26(5):055006.
  • Tran AS. Control of plastic deformation in Cu50Ta50 metallic glass by insertion of Cu crystalline cores. Physica Scripta. 2021;96(6):065402.
  • Fischer F, Schmitz G, Eich SM. A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential. Acta Materialia. 2019;176:220–231.
  • Shimizu F, Ogata S, Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Materials Transactions. 2007;48:2923–2927.
  • Tran AS, Fang TH. Effects of grain size and indentation sensitivity on deformation mechanism of nanocrystalline tantalum. International Journal of Refractory Metals and Hard Materials. 2020;92:105304.
  • Suryanarayana C, Mukhopadhyay D, Patankar SN, et al. Grain size effects in nanocrystalline materials. Journal of Materials Research. 1992;7(8):2114–2118.
  • Doan DQ, Fang TH, Chen TH. Effects of grain and twin boundary on friction and contact characteristics of CuZrAl nanocrystallines. Applied Surface Science. 2020;524:146458.
  • Qi Y, Chen X, Feng M. Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy. Applied Physics A. 2020;126(7):1–10.
  • Qiu RZ, Li CC, Fang TH. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation. Physica Scripta. 2017;92(8):085702.
  • Ralph B. Grain growth. Materials Science and Technology. 1990;6(11):1136–1144.
  • Yamakov V, Wolf D, Phillpot SR, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Materials. 2002;1(1):45–49.
  • Varvenne C, Luque A, Curtin WA. Theory of strengthening in fcc high entropy alloys. Acta Materialia. 2016;118:164–176.
  • Pestman BJ, De Hosson JTM, Vitek V, et al. Interaction between lattice dislocations and grain boundaries in fcc and ordered compounds: a computer simulation. Philosophical Magazine A. 1991;64(4):951–969.
  • Goel S, Beake B, Chan CW, et al. Twinning anisotropy of tantalum during nanoindentation. Materials Science and Engineering: A. 2015;627:249–261.
  • Gao Y, Ruestes CJ, Tramontina DR, et al. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids. 2015;75:58–75.
  • Tran AS, Fang TH, Hsiao JW. Incipient plasticity and voids nucleation of nanocrystalline gold nanofilms using molecular dynamics simulation. Current Applied Physics. 2019;19(3):332–340.
  • Fang TH, Huang CC, Chiang TC. Effects of grain size and temperature on mechanical response of nanocrystalline copper. Materials Science and Engineering: A. 2016;671:1–6.
  • Adibi S, Branicio PS, Zhang YW, et al. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses. Journal of Applied Physics. 2014;116(4):043522.
  • Wolf D, Yamakov V, Phillpot SR, et al. Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials. Zeitschrift für Metallkunde. 2003;94(10):1091–1097.
  • Zhang JJ, Hartmaier A, Wei YJ, et al. Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Modelling and Simulation in Materials Science and Engineering. 2013;21(6):065001.
  • You Z, Li X, Gui L, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Materialia. 2013;61(1):217–227.
  • Huang C, Peng X, Fu T, et al. Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Materials Science and Engineering: A. 2017;700:609–616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.