54
Views
0
CrossRef citations to date
0
Altmetric
Articles

Molecular insights into the adsorption mechanism of E21R and T7E21R human defensin 5 on a bacterial membrane

, , ORCID Icon & ORCID Icon
Pages 1293-1303 | Received 19 Jan 2022, Accepted 28 May 2022, Published online: 28 Jun 2022

References

  • Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8:48:1–25.
  • Mahlapuu M, Hakansson J, Ringstad L, et al. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194:1–12.
  • Fjell CD, Hiss JA, Hancock RE, et al. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2011;11:37–51.
  • Huan Y, Kong Q, Mou H, et al. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779.
  • Dijksteel GS, Ulrich MM, Middelkoop E, et al. Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol. 2021;12:287.
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–720.
  • Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1408–1425
  • De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnology Letters. 2005;27:1337–1347.
  • Xu D, Lu W. Defensins: a double-edged sword in host immunity. Front Immunol. 2020;11:764:1–9.
  • Chen HQ, Xu ZN, Peng L, et al. Recent advances in the research and development of human defensins. Peptides. 2006;27:931–940.
  • Pazgier M, Li X, Lu W, et al. Human defensins: synthesis and structural properties. Curr Pharm Des. 2007;13:3096–3118.
  • Quayle AJ, Porter EM, Nussbaum AA, et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human. Am J Pathol. 1998;152:1247–1258.
  • de Leeuw E, Burks SR, Li X, et al. Structure-dependent functional properties of human defensin 5. FEBS Letters. 2007;581:515–520.
  • de Leeuw E, Rajabi M, Zou GZ, et al. Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Letters. 2009;583:2507–2512.
  • Wommack AJ, Robson SA, Wanniarachchi YA, et al. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Biochemistry. 2012;51:9624–9637.
  • Rajabi M, Ericksen B, Wu X, et al. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. J Biol Chem. 2012;287:21615–21627.
  • Chapnik N, Levit A, Niv MY, et al. Expression and structure/function relationships of human defensin 5. Appl Biochem Biotech. 2012;166:1703–1710.
  • Chileveru HR, Lim SA, Chairatana P, et al. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry. 2015;54:1767–1777.
  • Wang C, Shen M, Zhang N, et al. Reduction impairs the antibacterial activity but benefits the LPS neutralization ability of human enteric defensin 5. Sci Rep. 2016;6:22875.
  • Wu Z, Hoover DM, Yang D, et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc Natl Acad Sci. 2003;100:8880.
  • Li X, Saravanan R, Kwak SK, et al. Biomolecular engineering of a human beta defensin model for increased salt resistance. Chem Eng Sci. 2013;95:128–137.
  • Wang C, Shen M, Gohain N, et al. Design of a potent antibiotic peptide based on the active region of human defensin 5. J Med Chem. 2015;58:3083–3093.
  • Zhao G, Chen Y, He Y, et al. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomater Sci. 2019;7:2440–2451.
  • Awang T, Pongprayoon P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J Mol Model. 2021;27:291.
  • Awang T, Chairatana P, Vijayan R, et al. Evaluation of the binding mechanism of human defensin 5 in a bacterial membrane: A simulation study. Int J Mol Sci. 2021;22:12401.
  • Awang T, Pongprayoon P. The adsorption of human defensin 5 on bacterial membranes: simulation studies. J Mol Model. 2018;24:273.
  • Yeasmin R, Brewer A, Fine LR, et al. Molecular dynamics simulations of human beta-defensin type 3 crossing different lipid bilayers. ACS Omega. 2021;6:13926–13939.
  • Kumar A, Purohit R. Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One. 2013;8:e64364.
  • Kumar A, Rajendran V, Sethumadhavan R, et al. Computational investigation of cancer-associated molecular mechanism in aurora A (S155R) mutation. Cell Biochem Biophys. 2013;66:787–796.
  • Hsu P-C, Jefferies D, Khalid S. Molecular dynamics simulations predict the pathways via which pristine fullerenes penetrate bacterial membranes. The Journal of Physical Chemistry B. 2016;120:11170–11179.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4:  algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25:1656–1676.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.
  • Jung SW, Lee J, Cho AE. Elucidating the bacterial membrane disruption Mechanism of Human α-defensin 5: A theoretical study. J Phys Chem B. 2017;121:741–748.
  • Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33–38.
  • Wang C, Zhao G, Wang S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant acinetobacter baumannii. Antimicrob Agents Chemother. 2018;62:1504–1517.
  • Szyk A, Wu ZB, Tucker K, et al. Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci. 2006;15:2749–2760.
  • Wang C, Shen M, Gohain N, et al. Design of a potent antibiotic peptide based on the active region of human defensin 5. J Med Chem. 2015;58:3083–3093.
  • Lehrer RI, Jung G, Ruchala P, et al. Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J Immunol. 2009;183:480–490.
  • Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol. 2010;618:137–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.