165
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effects of potential model of CO2 on its bulk phase properties and adsorption on surfaces and in pores

, &
Pages 1304-1314 | Received 11 Apr 2022, Accepted 28 May 2022, Published online: 15 Jun 2022

References

  • Dantas S, Struckhoff KC, Thommes M, et al. Phase behavior and capillary condensation hysteresis of carbon dioxide in mesopores. Langmuir. 2019;35(35):11291–11298.
  • Mukherjee A, Okolie JA, Abdelrasoul A, et al. Review of post-combustion carbon dioxide capture technologies using activated carbon. J Environ Sci. 2019;83:46–63.
  • Siegelman RL, Kim EJ, Long JR. Porous materials for carbon dioxide separations. Nat Mater. 2021;20:1060–1072.
  • Liu X, Fan C, Do D. Microscopic characterization of xenon adsorption in wedge pores. Adsorp. 2019;25:1043–1055.
  • Loi Q, Prasetyo L, Tan J, et al. Wedge pore modelling of gas adsorption in activated carbon: consistent pore size distributions. Carbon. 2020;166:414–426.
  • Loi Q, Prasetyo L, Tan J, et al. Order-disorder transition of an argon adsorbate in graphitic wedge pores. Chem Eng J. 2020;384:123286.
  • Norman G, Filinov V. Investigation of phase transitions by a Monte Carlo method. High Temp (USSR). 1969: 216–222.
  • Frenkel D, Smit B. Understanding molecular simulation. 2nd ed. New York: Academic Press; 2002.
  • Hammonds K, McDonald I, Tildesley D. Computational studies of the structure of carbon dioxide monolayers physisorbed on the basal plane of graphite. Mol Phys. 1990;70(2):175–195.
  • Murthy C, O’Shea S, McDonald I. Electrostatic interactions in molecular crystals lattice dynamics of solid nitrogen and carbon dioxide. Mol Phys. 1983;50(3):531–541.
  • Potoff J, Siepmann J. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001;47(7):1676–1682.
  • Vishnyakov A, Ravikovitch PI, Neimark AV. Molecular level models for CO2 sorption in nanopores. Langmuir. 1999;15(25):8736–8742.
  • Do D, Do H. Effects of potential models on the adsorption of carbon dioxide on graphitized thermal carbon black: GCMC computer simulations. Colloids Surf A. 2006;277(1-3):239–248.
  • Golebiowska M, Firlej L, Kuchta B, et al. Structural transformations of nitrogen adsorbed on graphite: Monte Carlo studies of spatial heterogeneity in multilayer system. J Chem Phys. 2009;130(20):204703.
  • Kuchta B, Etters RD. Calculated properties of monolayer and multilayer N2 on graphite. Phys Rev B. 1987;36:3400–3406.
  • Xu H, Phothong K, Do D, et al. Wetting/non-wetting behaviour of quadrupolar molecules (N2, C2H4, CO2) on planar substrates. Chem Eng J. 2021;419:129502.
  • Terlain A, Larher Y. Phase diagrams of films of linear molecules with large quadrupole moments (CO2, N2O, C2N2) adsorbed on graphite. Surf Sci. 1983;125(1):304–311.
  • Xu H, Zeng Y, Do DD, et al. On the nonwetting/wetting behavior of carbon dioxide on graphite. J Phys Chem C. 2019;123(14):9112–9120.
  • Steele WA. Monolayers of linear molecules adsorbed on the graphite basal plane: structures and intermolecular interactions. Langmuir. 1996;12(1):145–153.
  • Do D, Junpirom S, Nicholson D, et al. Importance of molecular shape in the adsorption of nitrogen, carbon dioxide and methane on surfaces and in confined spaces. Colloids Surf A. 2010;353(1):10–29.
  • Fan C, Do D, Nicholson D. A new and effective Bin–Monte Carlo scheme to study vapour–liquid equilibria and vapour–solid equilibria. Fluid Phase Equilib. 2012;325:53–65.
  • Do D, Do H. Pore characterization of carbonaceous materials by DFT and GCMC simulations: A review. Adsorption Sci Technol. 2003;21(5):389–424.
  • Ravikovitch PI, Vishnyakov A, Russo R, et al. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir. 2000;16(5):2311–2320.
  • Velasco L, Guillet-Nicolas R, Dobos G, et al. Towards a better understanding of water adsorption hysteresis in activated carbons by scanning isotherms. Carbon. 2016;96:753–758.
  • Kohmuean P, Inthomya W, Wongkoblap A, et al. Monte Carlo simulation and experimental studies of CO2, CH4 and their mixture capture in porous carbons. Molecules. 2021;26(9):2413.
  • Rosalind EF. Crystallite growth in graphitizing and non-graphitizing carbons. Proc R Soc London, Ser A. 1951;209:196–218.
  • Bojan M, Steele W. Computer simulation of physisorption on a heterogeneous surface. Surf Sci. 1988;199(3):L395–L402.
  • Bojan M, Steele W. Computer simulation of physical adsorption on stepped surfaces. Langmuir. 1993;9(10):2569–2575.
  • Steele W. The physical interaction of gases with crystalline solid: I. gas-solid energies and properties of isolated adsorbed atoms. Surf Sci. 1973;36(1):317–352.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989. p. 385.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17:338–343.
  • Frenkel D, Smit B, Tobochnik J, et al. Understanding molecular simulation. Comput Phys. 1997;11(4):351–354.
  • Mountain R, Thirumalai D. Quantative measure of efficiency of Monte Carlo simulations. Phys A. 1994;210(3-4):453–460.
  • Lemmon E, Mclinden M, Friend D. Thermophysical properties of fluid system in NIST chemistry webbook. Gaithersburg (MD): NIST Standard Reference Database Number 69; 2018.
  • Spencer WB, Amberg CH, Beebe RA. Further studies of adsorption on graphitized carbon blacks. J Phys Chem. 1958;62(6):719–723.
  • Chen B, Siepmann JI, Klein ML. Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: applications to Lennard-Jonesium and carbon dioxide. J Phys Chem B. 2001;105(40):9840–9848.
  • Do D, Nicholson D, Do H. On the henry constant and isosteric heat at zero loading in gas phase adsorption. J Colloid Interface Sci. 2008;324(1):15–24.
  • Guillot A, Stoeckli F. Reference isotherm for high pressure adsorption of CO2 by carbons at 273 K. Carbon. 2001;39(13):2059–2064.
  • Do D, Do H. Appropriate volumes for adsorption isotherm studies: The absolute void volume, accessible pore volume and enclosing particle volume. J Colloid Interf Sci. 2007;316(2):317–330.
  • Zeng Y, Do DD, Nicholson D. Existence of ultrafine crevices and functional groups along the edge surfaces of graphitized thermal carbon black. Langmuir. 2015;31(14):4196–4204.
  • Nguyen VT, Horikawa T, Do D, et al. On the relative strength of adsorption of gases on carbon surfaces with functional groups: fluid–fluid, fluid–graphite and fluid–functional group interactions. Carbon. 2013;61:551–557.
  • Bottani E, Bakaev V, Steele W. A simulation/experimental study of the thermodynamic properties of carbon dioxide on graphite. Chem Eng Sci. 1994;49(17):2931–2939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.