223
Views
0
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics modelling of amorphisation induced change in the mechanical properties of β-Li2TiO3

ORCID Icon & ORCID Icon
Pages 1330-1342 | Received 17 Dec 2021, Accepted 26 May 2022, Published online: 16 Jun 2022

References

  • Johnson, C, Kummerer, K, Roth, E. Ceramic breeder materials. J Nucl Mater. 1988;155-157:188–201.
  • Roux, N, Hollenberg, G, Johnson, C, et al. Summary of experimental results for ceramic breeder materials. Fusion Eng Des. 1995;27(C):154–166.
  • Cook, I. Materials research for fusion energy. Nat Mater. 2006;5(2):77–80.
  • Lee, WE, Gilbert, M, Murphy, ST, et al. Opportunities for advanced ceramics and composites in the nuclear sector. J Am Ceram Soc. 2013;96(7):2005–2030.
  • Piazza, G, Reimann, J, Günther, E, et al. Characterisation of ceramic breeder materials for the helium cooled pebble bed blanket. J Nucl Mater. 2002;307–311(Suppl. 1):811–816.
  • Lulewicz, JD, Roux, N. First results of the investigation of Li 2ZrO 3 and Li 2TiO 3 pebbles. Fusion Eng Des. 1998;39–40:745–750.
  • Zaccari, N, Aquaro, D. Mechanical characterization of Li 2TiO 3 and Li 4SiO 4 pebble beds: experimental determination of the material properties and of the pebble bed effective values. Fusion Eng Des. 2007;82(15–24):2375–2382.
  • Reimann, J, Ericher, D, Wörner, G. Influence of pebble bed dimensions and filling factor on mechanical pebble bed properties. Fusion Eng Des. 2003;69(1–4):241–244.
  • Xiang, M, Zhang, Y, Zhang, Y, et al. Preparation of Li 2TiO 3–Li 4SiO 4 core-shell ceramic pebbles with enhanced crush load by graphite bed process. J Nucl Mater. 2015;466(3):477–483.
  • Chen, Z, Lu, W, Wang, J, et al. Lithium/titanium ratio: a key factor on crystal structure and mechanical properties of lithium titanate pebbles for tritium breeder. J Nucl Mater. 2021;553:153033.
  • Knitter, R, Kolb, MH, Kaufmann, U, et al. Fabrication of modified lithium orthosilicate pebbles by addition of titania. J Nucl Mater. 2013;442(1–3, Suppl. 1):S433–S436.
  • Heuser, JM, Zarins, A, Baumane, L, et al. Radiation stability of long-term annealed bi-phasic advanced ceramic breeder pebbles. Fusion Eng Des. 2019 Jan;138:395–399.
  • Roux, N. Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J Nucl Mater. 1996;233–237(Part II):1431–1435.
  • Gierszewski, P. Review of properties of lithium metatitanate. Fusion Eng Des. 1998;39–40:739–743.
  • An, Z, Ying, A, Abdou, M. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds. Fusion Eng Des. 2007;82(15–24):2233–2238.
  • An, Z, Ying, A, Abdou, M. Numerical characterization of thermo-mechanical performance of breeder pebble beds. J Nucl Mater. 2007;367–370(Part B):1393–1397.
  • Gan, Y, Kamlah, M. Discrete element modelling of pebble beds: with application to uniaxial compression tests of ceramic breeder pebble beds. J Mech Phys Solids. 2010;58(2):129–144.
  • Annabattula, RK, Gan, Y, Kamlah, M. Mechanics of binary and polydisperse spherical pebble assembly. Fusion Eng Des. 2012;87(5–6):853–858.
  • Moscardini, M, Gan, Y, Annabattula, RK, et al. A discrete element method to simulate the mechanical behavior of ellipsoidal particles for a fusion breeding blanket. Fusion Eng Des. 2017;121:22–31.
  • Gong, B, Feng, Y, Liao, H, et al. Discrete element modeling of pebble bed packing structures for HCCB TBM. Fusion Eng Des. 2017 Jun;121(12):256–264.
  • Li, Y, Jia, B, Zhang, S, et al. Study on the mechanical behaviors and elastic modulus of mixed fusion pebble beds. Fusion Eng Des. 2017 Jul;121(10):356–360.
  • Gong, Y, Li, J, Liu, L, et al. Preparation of Li4SiO4 pebbles with increased lithium content and crush load via molten salt assisted sintering. Ceram Int. 2020;46(14):23282–23288.
  • Dell'Orco, G, Di Maio, PA, Giammusso, R, et al. On the theoretical-numerical study of the HEXCALIBER mock-up thermo-mechanical behaviour. Fusion Eng Des. 2010;85(5):694–706.
  • Gan, Y, Kamlah, M. Identification of material parameters of a thermo-mechanical model for pebble beds in fusion blankets. Fusion Eng Des. 2007;82(2):189–206.
  • Di Maio, PA, Giammusso, R, Vella, G. On the hyperporous non-linear elasticity model for fusion-relevant pebble beds. Fusion Eng Des. 2010;85(7–9):1234–1244.
  • Murphy, ST, Zeller, P, Chartier, A, et al. Atomistic simulation of the structural, thermodynamic, and elastic properties of Li2TiO3. J Phys Chem C. 2011;115(44):21874–21881.
  • Rasneur, B, Thevenot, G, Bouilloux, Y. Irradiation behavior of LiAlO2 and Li2ZrO3 ceramics in the ALICE 3 experiment. J Nucl Mater. 1992;191–194(Part A):243–247.
  • Wang, J, Xiang, M, Xu, Y, et al. The influences of deuterium irradiation defects on mechanical properties for ceramic breeder material Li 2TiO 3. Fusion Eng Des. 2017;121:182–187.
  • Hernández, T, Sánchez, FJ, Moroño, A, et al. Effect of irradiation on the stability of the corrosion layer produced in EUROFER by contact with lithium ceramics. J Nucl Mater. 2021;545:152614.
  • Zulueta, Y, Froeyen, M, Nguyen, M. Structural properties and mechanical stability of lithium-ion based materials. A theoretical study. Comput Mater Sci. 2017;136(12):271–279.
  • Pupeschi, S. Thermomechanical characterization of advanced ceramic breeder beds for fusion blankets [PhD thesis]. Karlsruhe Institute of Technology (KIT); 2017.
  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1): 1–19.
  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mat Sci Eng. 2010;18(1):15012
  • Kataoka, K, Takahashi, Y, Kijima, N, et al. Crystal growth and structure refinement of monoclinic Li2TiO3. Mater Res Bull. 2009;44(1):168–172.
  • Vijayakumar, M, Kerisit, S, Yang, Z, et al. Combined 6,7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3. J Phys Chem C. 2009;113(46):20108–20116.
  • Ziegler, JF, Biersack, JP, Littmark, UHHA. The stopping and ranges of ions in matter. New York (NY): Pergamon Press; 1985.
  • Sahoo, DR, Chaudhuri, P, Swaminathan, N. A molecular dynamics study of displacement cascades and radiation induced amorphization in Li 2TiO 3. Comput Mater Sci. 2021;200(2):110783
  • Sahoo, DR, Chaudhuri, P, Swaminathan, N. Primary radiation damages in Li2TiO3 and Li4SiO4: a comparison study using molecular dynamics simulation. Radiat Eff Defects Solids. 2022;177(3–4):307–326.
  • Sahoo, DR, Szlufarska, I, Morgan, D, et al. Role of pre-existing point defects on primary damage production and amorphization in silicon carbide (β-SiC). Nucl Instrum Methods Phys Res B. 2018;414:45–60.
  • Sahoo, DR, Szlufarska, I, Morgan, D, et al. The role of point defects on defect production in β-SiC. Nucl Esp. 1996;354(2014:) 36–37.
  • Kobayashi, M, Toda, K, Oya, Y, et al. Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3. J Nucl Mater. 2014;447(1–3):1–8.
  • Kobayashi, M, Oya, Y, Okuno, K. Tritium trapping states induced by lithium-depletion in Li2TiO3. J Nucl Mater. 2017;487:84–90.
  • Suhail, M, Puliyeri, B, Chaudhuri, P, et al. Molecular dynamics simulation of primary damage in β- Li2TiO3. Fusion Eng Des. 2018;136:914–919.
  • Kuganathan, N, Kordatos, A, Fitzpatrick, ME, et al. Defect process and lithium diffusion in Li 2TiO 3. Solid State Ion. 2018 Oct;327:93–98.
  • Irving, J, Kirkwood, JG. Transport processes. IV. The equations of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 1950;18(6):817–829.
  • Thompson, AP, Plimpton, SJ, Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys. 2009;131(15):154107.
  • Mase, GT, Smelser, RE, Rossmann, JS. Continuum mechanics for engineers. CRC Press; 2020.
  • Holt, A, Hoover, W, Gray, S, et al. Comparison of the lattice-dynamics and cell-model approximations with monte-carlo thermodynamic properties. Physica. 1970;49(1):61–76.
  • Quesnel, D, Rimai, D, DeMejo, L. Elastic compliances and stiffnesses of the fcc Lennard-Jones solid. Phys Rev B. 1993;48(10):6795–6807.
  • Manevitch, OL, Rutledge, GC. Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation. J Phys Chem B. 2004;108(4):1428–1435.
  • Griebel, M, Hamaekers, J. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng. 2004;193(17–20):1773–1788.
  • Vashishta, P, Kalia, RK, Nakano, A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys. 2007;101(10):103515
  • Pei, QX, Zhang, YW, Shenoy, VB. Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology. 2010;21(11):115709
  • Clavier, G, Desbiens, N, Bourasseau, E, et al. Computation of elastic constants of solids using molecular simulation: comparison of constant volume and constant pressure ensemble methods. Mol Simul. 2017;43(17):1413–1422.
  • Kishor, E, Swaminathan, N. A molecular dynamics based comparison of the mechanical properties of three polytypes of cubic BC3. J Superhard Mater. 2019;41(2):69–83.
  • Wu, ZJ, Zhao, EJ, Xiang, HP, et al. Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Phys Rev B Condens Matter Phys. 2007;76(5):1–15.
  • Mouhat, F, Coudert, FX. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90:224104.
  • Ranganathan, SI, Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101(5):3–6.
  • De Jong, M, Chen, W, Angsten, T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015;2:1–13.
  • Zulueta, YA, Nguyen, MT. Lithium Hexastannate: a potential material for energy storage. Phys Status Solidi B Basic Res. 2018;255(7):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.