542
Views
0
CrossRef citations to date
0
Altmetric
Articles

Interference mechanism of cations on transport of lithium and magnesium inside COF nanofiltration membranes

, , &
Pages 1369-1377 | Received 28 Mar 2022, Accepted 22 Jun 2022, Published online: 01 Jul 2022

References

  • Service RF. Zinc aims to beat lithium batteries at storing energy. Science. 2021;372(6545):890–891.
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367.
  • Morse I. A dead battery dilemma. Science. 2021 May 21;372(6544):780–783.
  • Zhang Y, Sun W, Xu R, et al. Lithium extraction from water lithium resources through green electrochemical-battery approaches: a comprehensive review. J Clean Product. 2021;285:124905.
  • Choubey PK, Kim M-S, Srivastava RR, et al. Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: from mineral and brine resources. Miner Eng. 2016;89:119–137.
  • Cabello J. Lithium brine production, reserves, resources and exploration in Chile: an updated review. Ore Geol Rev. 2021;128:103883.
  • Swain B. Recovery and recycling of lithium: a review. Sep Purif Technol. 2017;172:388–403.
  • Kelly JC, Wang M, Dai Q, et al. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resour Conserv Recycl. 2021;174:105762.
  • Somrani A, Hamzaoui AH, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination. 2013;317:184–192.
  • Xu S, Song J, Bi Q, et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice. J Membr Sci. 2021;635:119441.
  • Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+separation from salt-lake brines and seawater: a comprehensive review. J Indus Eng Chem. 2020;81:7–23.
  • Li X, Mo Y, Qing W, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci. 2019;591:117317.
  • Wu H, Lin Y, Feng W, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio. J Membr Sci. 2020;603:117997.
  • Awais Ashraf M, Li X, Wang J, et al. DiaNanofiltration-based process for effective separation of Li+ from the high Mg2+/Li+ ratio aqueous solution. Sep Purif Technol. 2020;247:116965.
  • Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+separation. J Membr Sci. 2021;620:118862.
  • Lu Z, Wu Y, Ding L, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angewand Chem Int Ed. 2021;60(41):22265–22269.
  • Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+from brine with high Mg2+/Li+ ratio. Desalination. 2019;449:57–68.
  • Xu F, Wei M, Zhang X, et al. Ion rejection in covalent organic frameworks: revealing the overlooked effect of in-pore transport. ACS Appl Mater Interfaces. 2019;11(48):45246–45255.
  • Ruan Y, Zhu Y, Zhang Y, et al. Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores: the role of dehydration in second shell. Langmuir. 2016;32(51):13778–13786.
  • Zhu Y, Ruan Y, Zhang Y, et al. Mg2+-channel-inspired nanopores for Mg2+/Li+ separation: the effect of coordination on the ionic hydration microstructures. Langmuir. 2017;33(36):9201–9210.
  • Li Y, Yue X, Huang G, et al. Li+ selectivity of carboxylate graphene nanopores inspired by electric field and nanoconfinement. Small. 2021. 2006704. DOI:10.1002/smll.202006704.
  • Xu F, Dai L, Wu Y, et al. Li+/Mg2+separation by membrane separation: the role of the compensatory effect. J Membr Sci. 2021;636:119542.
  • Xu F, Wei M, Zhang X, et al. Effect of hydrophilicity on water transport through sub-nanometer pores. J Membr Sci. 2020;611:118297.
  • Li Y, Wu Q, Guo X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat Commun. 2020;11(1):599.
  • Yuan S, Li X, Zhu J, et al. Covalent organic frameworks for membrane separation. Chem Soc Rev. 2019;48(10):2665–2681.
  • Zhou W, Wei M, Zhang X, et al. Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl Mater Interfaces. 2019;11(18):16847–16854.
  • Wang R, Shi XS, Zhang Z, et al. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. J Membr Sci. 2019 Sep;586:274–280.
  • Tong MM, Lan YS, Yang QY, et al. Exploring the structure-property relationships of covalent organic frameworks for noble gas separations. Chem Eng Sci. 2017;168:456–464.
  • Stegbauer L, Hahn MW, Jentys A, et al. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering. Chem Mater. 2015;27(23):7874–7881.
  • Li ZP, Zhi YF, Feng X, et al. An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage. Chem Eur J. 2015;21(34):12079–12084.
  • Kang ZX, Peng YW, Qian YH, et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem Mater. 2016;28(5):1277–1285.
  • Mayo SL, Olafson BD, Goddard WA. Dreiding – a generic force-field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
  • Lin LC, Choi JW, Grossman JC. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem Commun. 2015;51(80):14921–14924.
  • Tong MM, Yang QY, Xiao YL, et al. Revealing the structure-property relationship of covalent organic frameworks for CO2 capture from postcombustion gas: a multi-scale computational study. Phys Chem Chem Phys. 2014;16(29):15189–15198.
  • Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112(30):9020–9041.
  • Li P, Roberts BP, Chakravorty DK, et al. Rational design of particle Mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput. 2013;9(6):2733–2748.
  • Chen B, Jiang HF, Liu X, et al. Molecular insight into water desalination across multilayer graphene oxide membranes. Appl Mater Inter. 2017;9(27):22826–22836.
  • Heiranian M, Farimani AB, Aluru NR. Water desalination with a single-layer MoS2 nanopore. Nat Commun. 2015;6:8616.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Letters. 2012;12(7):3602–3608.
  • Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B. 2008;112(5):1427–1434.
  • Kohler MH, Bordin JR, Barbosa MC. 2D nanoporous membrane for cation removal from water: effects of ionic valence, membrane hydrophobicity, and pore size. J Chem Phys. 2018;148:22.
  • Zhang X, Wei M, Xu F, et al. Thickness-dependent ion rejection in nanopores. J Membr Sci. 2020;601:117899.
  • Xu F, Wei M, Wang Y. Effect of hydrophilicity on ion rejection of sub-nanometer pores. Sep Purif Technol. 2021;257:117937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.