274
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nano-CaCO3 enhances PVA fiber-matrix interfacial properties: an experimental and molecular dynamics study

, ORCID Icon, , ORCID Icon, &
Pages 1378-1392 | Received 01 Apr 2022, Accepted 21 Jun 2022, Published online: 29 Jun 2022

References

  • C. DDL. Use of polymers for cement-based structural materials. J Mater Sci. 2004;39:2973–2978.
  • O. Onuaguluchi,N. Banthia, Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites. 68. (2016). 96-108, doi:10.1016/j.cemconcomp.2016.02.014.
  • Torres RB, dos Santos JC, Panzera TH, et al. Hybrid glass fibre reinforced composites containing silica and cement microparticles based on a design of experiment. Polym Test. 2017;57:87–93. doi:10.1016/j.polymertesting.2016.11.012.
  • Xu H, Wang Z, Shao Z, et al. Experimental study on durability of fiber reinforced concrete: effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Constr Build Mater. 2021;306:1–23. doi:10.1016/j.conbuildmat.2021.124867.
  • Meng G, Wu B, Xu S, et al. Modelling and experimental validation of flexural tensile properties of steel fiber reinforced concrete. Constr Build Mater. 2021;273:1–8. doi:10.1016/j.conbuildmat.2020.121974.
  • Pakravan HR, Jamshidi M, Latifi M. The effect of hydrophilic (polyvinyl alcohol) fiber content on the flexural behavior of engineered cementitious composites (ECC). The Journal of The Textile Institute. 2018;109:79–84. doi:10.1080/00405000.2017.1329132.
  • de Oliveira AM, Silva FdA, Fairbairn EdMR, et al. Coupled temperature and moisture effects on the tensile behavior of strain hardening cementitious composites (SHCC) reinforced with PVA fibers. Materials and Structures. 2018;51:1–13. doi:10.1617/s11527-018-1192-1.
  • Noushini A, Samali B, Vessalas K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr Build Mater. 2013;49:374–383. doi:10.1016/j.conbuildmat.2013.08.035.
  • Zhang X, Deng Z. Experimental study and theoretical analysis on axial compressive behavior of concrete columns reinforced with GFRP bars and PVA fibers. Constr Build Mater. 2018;172:519–532. doi:10.1016/j.conbuildmat.2018.03.237.
  • Wang LEI, Guo F, Yang H, et al. Comparison of Fly Ash, Pva fiber, Mgo and shrinkage-reducing admixture on the frost resistance of face slab concrete Via pore structural and fractal analysis. FractalS. 2021;29:1–33. doi:10.1142/S0218348X21400028.
  • B. Kim,J.-Y. Lee. Relationships between mechanical and transport properties for fiber reinforced concrete. J Compos Mater. 2012;46:1607–1615. doi:10.1177/0021998311421691.
  • Wang L, Zhou SH, Shi Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Composites Part B: Engineering. 2017;130:28–37. doi:10.1016/j.compositesb.2017.07.058.
  • Mechtcherine V, Millon O, Butler M, et al. Mechanical behaviour of strain hardening cement-based composites under impact loading. Cement and Concrete Composites. 2011;33:1–11. doi:10.1016/j.cemconcomp.2010.09.018.
  • Ong MBKCG, Paramasivam P. Resistance of ®bre concrete slabs to low velocity projectile impact. Cem Concr Compos. 1999;21:391–401.
  • Stang VCLH, Krenchel H. Design and structural applications of stress-crack width relations in fibre reinforced concrete. (1995).
  • Dai J, Ueda T, Sato Y. Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet–concrete interfaces with a simple method. Journal of Composites for Construction. 2005;9:52–62. doi:10.1061/(ASCE)1090-0268(2005)9:1(52).
  • Zhang W, Zou X, Wei F, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement. Composites Part B: Engineering. 2019;162:500–507. doi:10.1016/j.compositesb.2019.01.034.
  • Zhou Y, Hou D, Manzano H, et al. Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study. ACS Appl Mater Interfaces. 2017;9:41014–41025. doi:10.1021/acsami.7b12795.
  • Q. Xiong,X. Tian, Dynamic simulations of stimuli-responsive switching of azobenzene derivatives in self-assembled monolayers: reactive rotation potential and switching functions. Molecular Simulation. 41. (2015). 28–42, doi:10.1080/08927022.2014.918974.
  • Kim D, Naaman AE, El-Tawil S. High tensile strength strain-hardening FRC composites with less than 2% fiber content. proceedings of second international symposium on ultra high performance concrete, kassel. Germany. 2008: 169–176.
  • Kim D, El-Tawil S, Naaman A. Correlation between single fiber pullout and tensile response of FRC composites with high strength steel fibers. Fifth International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC5). RILEM, ed HW Reinhardt and AE Naaman: Paris. (2007). 67-76,.
  • Singh S, Shukla A, Brown R. Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research. 2004;34:1919–1925. doi:10.1016/j.cemconres.2004.02.014.
  • Zhou A, Yu Z, Wei H, et al. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites. ACS Appl Mater Interfaces. 2020;12:44163–44171. doi:10.1021/acsami.0c12477.
  • Pi Z, Xiao H, Liu R, et al. Effects of brass coating and nano-SiO2 coating on steel fiber–matrix interfacial properties of cement-based composite. Composites Part B: Engineering. 2020;189:1–13. doi:10.1016/j.compositesb.2020.107904.
  • Yao X, Shamsaei E, Chen S, et al. Graphene oxide-coated poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Composites Part B: Engineering. 2019;174:1–23. doi:10.1016/j.compositesb.2019.107010.
  • Zhang Peng LC, juan W, LuoYi KANG. Mechanical properties of concrete synergistically reinforced with nano SiO2 and polyvinyl alcohol fiber. HIGHWAY. 2021;66:271–275.
  • Zhu, Be, Jin C, Jin Xu, et al. Effect of nano-alumina on quasi-static and dynamic properties of concrete. BULLETIN OF THE CHINESE CERAMIC SOCIETY. 2016;35:2575–2589. doi:10.16552/j.cnki.issn1001-1625.2016.08.041.
  • Wu Z, Shi C, Khayat KH, et al. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites. 2016;70:24–34. doi:10.1016/j.cemconcomp.2016.03.003.
  • Zhang Peng Wl, Juan Wang, Mei-ju Jiao. Study on the workability and mechanical properties of nano-CaCO3 and PVA fiber reinforced concrete. CHINA CONCRETEAND CEMENTPRODUCTS. 2020;3:42–54. doi:10.19761/j.1000-4637.2020.03.042.05.
  • Feng Y, Qin D, Li L, et al. Eva enhances the interfacial strength of EPS concrete: a molecular dynamics study. J Exp Nanosci. 2021;16:382–396. doi:10.1080/17458080.2021.2003338.
  • Roustazadeh D, Aghadavoudi F, Khandan A. A synergic effect of CNT/Al2O3reinforcements on multiscale epoxy-based glass fiber composite: fabrication and molecular dynamics modeling. Mol Simul. 2020;46:1308–1319. doi:10.1080/08927022.2020.1815729.
  • Guo X, Xin H, Li J, et al. Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading. Mol Simul. 2019;45:1481–1487. doi:10.1080/08927022.2019.1632449.
  • Zhou Y, Tang L, Liu J, et al. Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites. Cement and Concrete Research. 2019;125:1–12. doi:10.1016/j.cemconres.2019.105891.
  • J. Zhou,Y. Liang. Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates. Mol Simul. 2020;46:1181–1190. doi:10.1080/08927022.2020.1807543.
  • Liang J. Evaluation of dispersion of nano-CaCO3 particles in polypropylene matrix based on fractal method. Composites Part A: Applied Science and Manufacturing. 2007;38:1502–1506. doi:10.1016/j.compositesa.2007.01.011.
  • Kamal M, Sharma C, Upadhyaya P, et al. Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites. J Appl Polym Sci. 2012;124:2649–2656. doi:10.1002/app.35319.
  • HU Zhang-wen LR-f. Zhuo Jia-ming, preparation and characterization ofNano-Caco3/PVA composite material. MINING AND METALLURGICAL ENGINEERING. 2008;28:102–109.
  • Tang C, Li X, Tang Y, et al. Agglomeration mechanism and restraint measures of SiO2nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations. Nanotechnology. 2020;31:1–17. doi:10.1088/1361-6528/ab662c.
  • WANG Wei QL. Application of titanate coupling agent to CaCO3 filled SF/PVA blend films. Journal of Textile Research. 2010;31:12–20.
  • Zhang LC-hLQ-f. Peng experimental study on mechanical properties of cement stabilized crushed stones reinforced with polypropylene fiber. Journal of Zhengzhou University(Engineering Science. 2010;31:44–47.
  • T. Sato, F. Diallo, Seeding effect of nano-CaCO3on the hydration of tricalcium silicate. Transportation Research Record: Journal of the Transportation Research Board. 2010;2010;2141:61–67. doi:10.3141/2141-11.
  • Tian-yu HZ-yZ. Influence of nano-CaCO3 on ultra high performance concrete. BULLETIN OF THE CHINESE CERAMIC SOCIETY. 2013;32:1103–1125. doi:10.16552/j.cnki.issn1001-1625.2013.06.018.
  • Tian-hang ZPYY-hKL-yZ. Flexural properties of nano-CaCO3 and PVA fiber Reinforced concrete. Science Technology and Engineering. 2020;20:4507–4511.
  • Meng Tao QK, Xiaoqian Q, Shulin Z. Effect of the nano-CaCO3 on hydrated properties and interface of cement paste. RARE METAL MATERIALS AND ENGINEERING. 2008;37:667–669.
  • Shin H, Yang S, Choi J, et al. Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach. Chem Phys Lett. 2015;635:80–85. doi:10.1016/j.cplett.2015.06.054.
  • Lu Z, Hanif A, Sun G, et al. Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties. Cement and Concrete Composites. 2018;87:220–228. doi:10.1016/j.cemconcomp.2018.01.006.
  • Li YWaSBVC. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. (1990).
  • Wang X, Xie W, Li T, et al. Molecular dynamics study on mechanical properties of interface between urea-formaldehyde resin and calcium-silicate-hydrates. Materials (Basel). 2020;13:1–14. doi:10.3390/ma13184054.
  • Zhou Y, Peng Z-c, Huang J-l, et al. A molecular dynamics study of calcium silicate hydrates-aggregate interfacial interactions and influence of moisture. Journal of Central South University. 2021;28:16–28. doi:10.1007/s11771-021-4582-4.
  • Jin S, Li J, Xu W, et al. Heterogeneous nature of calcium silicate hydrate (C-S-H) Gel: A molecular dynamics study. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2020;35:435–440. doi:10.1007/s11595-020-2275-8.
  • Allen AJ, Thomas JJ, Jennings HM. Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater. 2007;6:311–316. doi:10.1038/nmat1871.
  • Geng G, Myers RJ, Qomi MJA, et al. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci Rep. 2017;7:1–8. doi:10.1038/s41598-017-11146-8.
  • Roland B, Pellenqa J-M, Kushimac A, et al. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences. 2009;106:16102–16107.
  • Hamid SΑ. The crystal structure of the 11 natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O. Crystalline Materials. 1981;154(-):151–154.
  • Fu J, Bernard F, Kamali-Bernard S. Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation. Mol Simul. 2018;44:285–299. doi:10.1080/08927022.2017.1373191.
  • Tang S, A H, Yu W, et al. The interactions between water molecules and C-S-H surfaces in loads-induced nanopores: A molecular dynamics study. Appl Surf Sci. 2019;496:1–12. doi:10.1016/j.apsusc.2019.143744.
  • Hou D, Ma H, Zhu Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater. 2014;67:81–94. doi:10.1016/j.actamat.2013.12.016.
  • Gang WPQIAO, Lin YANG, Dong-shuai HOU, et al. Effect of PVA doping on the adsorption property of ions at C-S-H interface: a molecular dynamics simulation study. J. Qingdao University of Technology. 2020;41:17–21.
  • Wang Q, Pan S, Bai J, et al. Experimental and dynamics simulation studies of the molecular modeling and reactivity of the yaojie oil shale kerogen. Fuel. 2018;230:319–330. doi:10.1016/j.fuel.2018.05.031.
  • Zhou Y, Huang J, Yang X, et al. Enhancing the PVA fiber-matrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study. Constr Build Mater. 2021;285:1–12. doi:10.1016/j.conbuildmat.2021.122862.
  • Yu Y, Zhu w, Xiao J, et al. Molecular dynamics simulation of binding energies and mechanical properties of energetic systems with four components. ACTA CHIMICA SINICA. 2010;68:1181–1187.
  • Xia L, Xiao J-J, Fan J-F, et al. Molecular dynamics simulation of mechanical properties and surface interaction for nitrate plasticizer. ACTA CHIMICA SINICA. 2008;66:874–878.
  • Jiayuan YE, Wensheng Z, Hongxia W, et al. Structure OF CALCIUM SILICATE HYDRATE Ca4Si6O14(OH)4.2H20 SIMULATED BY THE MOLECULAR DYNAMICS. JOURNAL OF THE CHINESE CERAMIC SOCIETY. 2010;38:2346–2352. doi:10.14062/j.issn.0454-5648.2010.12.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.