409
Views
0
CrossRef citations to date
0
Altmetric
Articles

A molecular dynamics simulation on tunable and self-healing epoxy-polyimine network based on imine bond exchange reactions

, ORCID Icon, , &
Pages 1605-1615 | Received 26 May 2022, Accepted 02 Aug 2022, Published online: 19 Aug 2022

References

  • Tasdelen MA. Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem. 2011;2:2133–2145. doi:10.1039/c1py00041a
  • Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2011;10:14–27. doi:10.1038/nmat2891
  • Blaiszik BJ, Kramer SLB, Olugebefola SC, et al. Self-healing polymers and composites. Annu Rev Mater Res. 2010;40:179–211. doi:10.1146/annurev-matsci-070909-104532
  • Bowman CN, Kloxin CJ. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew Chemie Int Ed. 2012;51:4272–4274. doi:10.1002/anie.201200708
  • Thakur VK, Kessler MR. Self-healing polymer nanocomposite materials: A review. Polymer. 2015;69:369–383. doi:10.1016/j.polymer.2015.04.086
  • Chen X, Dam MA, Ono K, et al. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–1702. doi:10.1126/science.1065879
  • Neal JA, Mozhdehi D, Guan Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J Am Chem Soc. 2015;137:4846–4850. doi:10.1021/jacs.5b01601
  • Ling L, Li J, Zhang G, et al. Self-healing and shape memory linear polyurethane based on disulfide linkages with excellent mechanical property. Macromol Res. 2018;26:365–373. 10.1007/s13233-018-6037-9
  • Zheng X, Yang H, Sun Y, et al. A molecular dynamics simulation on self-healing behavior based on disulfide bond exchange reactions. Polymer. 2021;212:123111. doi:10.1016/j.polymer.2020.123111
  • Rekondo A, Martin R, De Luzuriaga A R, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horizons. 2014;1:237–240. doi:10.1039/C3MH00061C
  • Luo C, Lei Z, Mao Y, et al. Chemomechanics in the moisture-induced malleability of polyimine-based covalent adaptable networks. Macromolecules. 2018;51:9825–9838. doi:10.1021/acs.macromol.8b02046
  • Yu K, Shi Q, Li H, et al. Interfacial welding of dynamic covalent network polymers. J Mech Phys Solids. 2016;94:1–17. doi:10.1016/j.jmps.2016.03.009
  • Xiang H, Yin J, Lin G, et al. Photo-crosslinkable, self-healable and reprocessable rubbers. Chem Eng J. 2019;358:878–890. doi:10.1016/j.cej.2018.10.103
  • Liu YL, Chen YW. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol Chem Phys. 2007;208:224–232. doi:10.1002/macp.200600445
  • Feng L, Yu Z, Bian Y, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels–Alder reaction and thermal movement of molecular chains. Polymer. 2017;124:48–59. doi:10.1016/j.polymer.2017.07.049
  • Lu YX, Tournilhac F, Leibler L, et al. Making insoluble polymer networks malleable via olefin metathesis. J Am Chem Soc. 2012;134:8424–8427. doi:10.1021/ja303356z
  • Sun Y, Yang H, Xia W, et al. Molecular dynamics simulations of surface welding in crosslinked networks with thermally reversible linkages. Appl Surf Sci. 2020;527:146947. doi:10.1016/j.apsusc.2020.146947
  • Zou Z, Zhu C, Li Y, et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci Adv. 2018;4:eaaq0508. doi:10.1126/sciadv.aaq0508
  • Mo R, Hu J, Huang H, et al. Tunable, self-healing and corrosion inhibiting dynamic epoxy-polyimine network built by post-crosslinking. J Mater Chem A. 2019;7:3031–3038. doi:10.1039/C8TA11546J
  • Shi C, Zou Z, Lei Z, et al. Investigating the self-healing of dynamic covalent thermoset polyimine and Its nanocomposites. J Appl Mech Trans ASME. 2019;86:101005. doi:10.1115/1.4044088
  • Taynton P, Zhu C, Loob S, et al. Re-healable polyimine thermosets: polymer composition and moisture sensitivity. Polym Chem. 2016;7:7052–7056. doi:10.1039/C6PY01395C
  • Zheng X, Yang H, Sun Y, et al. Molecular dynamics simulations on self-healing behavior of photo-polymerization network. Smart Mater Struct. 2018;27:105013. doi:10.1088/1361-665X/aad7a1
  • Sun Y, Yang H, Guo Y. Molecular dynamics simulations of solvent evaporation-induced repolymerization of covalent adaptable networks. Comput Mater Sci. 2021;192:110412. doi:10.1016/j.commatsci.2021.110412
  • Sun Y, Yang H, Yu K, et al. A molecular dynamics study of decomposition of covalent adaptable networks in organic solvent. Polymer. 2019;180:121702. doi:10.1016/j.polymer.2019.121702
  • Yang H, Yu K, Mu X, et al. Molecular dynamics studying on welding behavior in thermosetting polymers due to bond exchange reactions. RSC Adv. 2016;6:22476–22487. doi:10.1039/C5RA26128G
  • Yang B, Zhang Y, Zhang X, et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: A new injectable cell therapy carrier. Polym Chem. 2012;3:3235–3238. doi:10.1039/c2py20627g
  • Zhang Y, Tao L, Li S, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules. 2011;12:2894–2901. doi:10.1021/bm200423f
  • Man Z, Li P, Zhou D, et al. High-performance lithium-organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone). J Mater Chem A. 2019;7:2368–2375. doi:10.1039/C8TA11230D
  • Su Z, Huang S, Wang Y, et al. Robust, high-barrier, and fully recyclable cellulose-based plastic replacement enabled by a dynamic imine polymer. J Mater Chem A. 2020;8:14082–14090. doi:10.1039/D0TA02138E
  • Liao L, Huang C, Meng C. Study on mechanical properties of polyethylene with chain branching in atomic scale by molecular dynamics simulation. Mol Simul. 2018;44:1016–1024. doi:10.1080/08927022.2018.1471690
  • Talapatra A, Datta D. Estimation of improvement in elastic moduli for functionalised defective graphene-based thermoplastic polyurethane nanocomposites: a molecular dynamics approach. Mol Simul. 2021;47:602–618. doi:10.1080/08927022.2021.1935927
  • Wong CPJ, Choi P. A review on the relaxation dynamics analysis of unentangled polymers with different structures. Mol Simul. 2021;47:888–899. doi:10.1080/08927022.2020.1810851
  • Grujicic M, Pandurangan B, Bell WC, et al. Molecular-level simulations of shock generation and propagation in polyurea. Mater Sci Eng A. 2011;528:3799–3808. doi:10.1016/j.msea.2011.01.081
  • Sun Y, Guo Y, Yang H. A molecular dynamics study of crosslinked epoxy networks: construction of atomistic models. Mol Simul. 2020;46:121–127. doi:10.1080/08927022.2019.1679364
  • Rappé AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–3363. doi:10.1021/j100161a070
  • Sun H, Mumby SJ, Maple JR, et al. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116:2978–2987. doi:10.1021/ja00086a030
  • Xin D, Han Q. Investigation of moisture diffusion in cross-linked epoxy moulding compound by molecular dynamics simulation. Mol Simul. 2013;39:322–329. doi:10.1080/08927022.2012.725204
  • Yang H, Wang ZD, Guo YF, et al. A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers. Sci China physics. Mech Astron. 2016;59:1–7.
  • Gissinger JR, Jensen BD, Wise KE. Reacter: A heuristic method for reactive molecular dynamics. Macromolecules. 2020;53:9953–9961. doi:10.1021/acs.macromol.0c02012
  • Li C, Strachan A. Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer (Guildf). 2011;52:2920–2928. doi:10.1016/j.polymer.2011.04.041
  • Bodiguel H, Fretigny C. Reduced viscosity in thin polymer films. Phys Rev Lett. 2006;97:1–4. doi:10.1103/PhysRevLett.97.266105
  • Ellison CJ, Torkelson JM. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater. 2003;2:695–700. doi:10.1038/nmat980
  • Fakhraai Z, Forrest JA. Measuring the surface dynamics of glassy polymers. Science. 2008;319(80-):600–604. doi:10.1126/science.1151205
  • Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013;42:7446–7467. doi:10.1039/c3cs60109a
  • Prager S, Tirrell M. The healing process at polymer-polymer interfaces. J Chem Phys. 1981;75:5194–5198. doi:10.1063/1.441871
  • Wool RP. Self-healing materials: a review. Soft Matter. 2008;4:400–418. doi:10.1039/b711716g
  • Apitz D, Johansen PM. Limitations of the stretched exponential function for describing dynamics in disordered solid materials. J Appl Phys. 2005;97. doi:10.1063/1.1852069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.