250
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microsolvation of phenol in water: structures, hydration free energy and enthalpy

ORCID Icon & ORCID Icon
Pages 403-414 | Received 06 Sep 2022, Accepted 08 Dec 2022, Published online: 05 Jan 2023

References

  • Watanabe H, Iwata S. Theoretical studies of geometric structures of phenol-water clusters and their infrared absorption spectra in the O–H stretching region. J Chem Phys. 1996;105:420–431.
  • Benoit DM, Clary DC. Quantum simulation of phenol- water clusters. J Phys Chem A. 2000;104:5590–5599.
  • Guedes R, Costa Cabral B, Martinho Simoes J, et al. Thermochemical properties and structure of phenol-(H2O)1−6 and phenoxy-(H2O)1−4 by density functional theory. J Phys Chem A. 2000;104:6062–6068.
  • Cabral do Couto P, Guedes R, Costa Cabral B, et al. Phenol O–H bond dissociation energy in water clusters. Int J Quantum Chem. 2002;86:297–304.
  • Ahn D-S, Jeon I-S, Jang S-H, et al. Hydrogen bonding in aromatic alcohol-water clusters: a brief review. Bull Korean Chem Soc. 2003;24:695–702.
  • Ahn D-S, Lee S-Y, Cheong W-J. Computational study of hydrogen bonding in phenol-acetonitrile-water clusters. Bull Korean Chem Soc. 2004;25:1161–1164.
  • Coutinho K, Cabral BC, Canuto S. Can larger dipoles solvate less? Solute–solvent hydrogen bond and the differential solvation of phenol and phenoxy. Chem Phys Lett. 2004;399:534–538.
  • Parthasarathi R, Subramanian V, Sathyamurthy N. Hydrogen bonding in phenol, water, and phenol-water clusters. J Phys Chem A. 2005;109:843–850.
  • Estácio SG, Cabral BC. Born–Oppenheimer molecular dynamics of phenol in a water cluster. Chem Phys Lett. 2008;456:170–175.
  • José CV, Sandra CO, Fernando CG, et al. Computational study of hydrogen bonding in substituted phenol-acetonitrile-water clusters. J Chin Chem Soc. 2008;55:529–534.
  • Cota R, Tiwari A, Ensing B, et al. Hydration interactions beyond the first solvation shell in aqueous phenolate solution. Phys Chem Chem Phys. 2020;22:19940–19947.
  • Fuke K, Kaya K. Electronic absorption spectra of phenol-(H2O)n and (phenol)n as studied by the MS MPI method. Chem Phys Lett. 1983;94:97–101.
  • Roth W, Schmitt M, Jacoby C, et al. Double resonance spectroscopy of phenol(H2O)1−12: evidence for ice-like structures in aromate–water clusters?. Chem Phys. 1998;239:1–9.
  • Janzen C, Spangenberg D, Roth W, et al. Structure and vibrations of phenol(H2O)7,8 studied by infrared-ultraviolet and ultraviolet-ultraviolet double-resonance spectroscopy and ab initio theory. J Chem Phys. 1999;110:9898–9907.
  • Mizuse K, Hamashima T, Fujii A. Infrared spectroscopy of phenol-(H2O)n>10: structural strains in hydrogen bond networks of neutral water clusters. J Phys Chem A. 2009;113:12134–12141.
  • Hamashima T, Mizuse K, Fujii A. Spectral signatures of four-coordinated sites in water clusters: infrared spectroscopy of phenol-(H2O)n (∼20≤n≤∼50). J Phys Chem A. 2011;115:620–625.
  • Shimamori T, Fujii A. Infrared spectroscopy of warm and neutral phenol–water clusters. J Phys Chem A. 2015;119:1315–1322.
  • Katada M, Fujii A. Infrared spectroscopy of protonated phenol–water clusters. J Phys Chem A. 2018;122:5822–5831.
  • Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J Comput Chem. 2002;23:517–529.
  • Reddy MR, Erion MD. Relative solvation free energies calculated using an ab initio QM/MM-based free energy perturbation method: dependence of results on simulation length. J Comput Aided Mol Des. 2009;23:837–843.
  • Sharma I, Kaminski GA. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order fuzzy-border continuum solvation model. J Comput Chem. 2012;33:2388–2399.
  • Nagrimanov RN, Samatov AA, Solomonov BN. Non-additivity in the solvation enthalpies of substituted phenols and estimation of their enthalpies of vaporization/sublimation at 298.15 K. J Mol Liq. 2016;221:914–918.
  • Nagrimanov RN, Ibragimova AR, Solomonov BN. Enthalpies of sublimation and vaporization of poly-substituted phenols containing intramolecular hydrogen bonds by solution calorimetry method. Thermochim Acta. 2020;692:178733.
  • Zhang J, Dolg M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys. 2015;17:24173–24181.
  • Zhang J, Dolg M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys. 2016;18:3003–3010.
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31:671–690.
  • Malloum A, Fifen JJ, Conradie J. Structures and spectroscopy of the ammonia eicosamer, (NH3)n=20. J Chem Phys. 2018;149:024304.
  • Malloum A, Fifen JJ, Conradie J. Exploration of the potential energy surface of the ethanol hexamer. J Chem Phys. 2019;150:124308.
  • Malloum A, Fifen JJ, Conradie J. Large-sized ammonia clusters and solvation energies of the proton in ammonia. J Comput Chem. 2020;41:21–30.
  • Malloum A, Fifen JJ, Conradie J. Theoretical infrared spectrum of the ethanol hexamer. Int J Quantum Chem. 2020;120:e26234.
  • Malloum A, Conradie J. Global and local minima of protonated acetonitrile clusters. New J Chem. 2020;44:17558–17569.
  • Malloum A, Fifen JJ, Dhaouadi Z, et al. Structures, relative stabilities and binding energies of neutral water clusters, (H2O)2−30. New J Chem. 2019;43:13020–13037.
  • Malloum A, Conradie J. Structures of water clusters in the solvent phase and relative stability compared to gas phase. Polyhedron. 2021;193:114856.
  • Tawa G, Topol I, Burt S, et al. Calculation of the aqueous solvation free energy of the proton. J Chem Phys. 1998;109:4852–4863.
  • Hunenberger P, Reif M. Single-ion solvation. Theoretical and computational chemistry series. The Royal Society of Chemistry; 2011. p. 001–664
  • Fifen JJ, Nsangou M, Dhaouadi Z, et al. Solvation energies of the proton in methanol. J Chem Theory Comput. 2013;9:1173–1181.
  • Pliego JR, Miguel EL. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach. J Phys Chem B. 2013;117:5129–5135.
  • Carvalho NF, Pliego JR. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale. Phys Chem Chem Phys. 2015;17:26745–26755.
  • Ishikawa A, Nakai H. Quantum chemical approach for condensed-phase thermochemistry (III): accurate evaluation of proton hydration energy and standard hydrogen electrode potential. Chem Phys Lett. 2016;650:159–164.
  • Malloum A, Fifen JJ, Dhaouadi Z, et al. Solvation energies of the proton in ammonia explicitly versus temperature. J Chem Phys. 2017;146:134308.
  • Malloum A, Fifen JJ, Conradie J. Solvation energies of the proton in methanol revisited and temperature effects. Phys Chem Chem Phys. 2018;20:29184–29206.
  • Malloum A, Fifen JJ, Conradie J. Determination of the absolute solvation free energy and enthalpy of the proton in solutions. J Mol Liq. 2021;322:114919.
  • Malloum A, Conradie J. Solvation free energy of the proton in acetonitrile. J Mol Liq. 2021;335:116032.
  • Fifen JJ, Nsangou M, Dhaouadi Z, et al. Structures of protonated methanol clusters and temperature effects. J Chem Phys. 2013;138:184301.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 revision A.03. Wallingford (CT): Gaussian; 2016.
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3094.
  • Grimme S. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. J Chem Phys. 2003;118:9095–9102.
  • Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:73–78.
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–6396.
  • Keith TA. TK Gristmill software. Vol. 11. Overland Park (KS); 2019. p. 16. Available from: aim.tkgristmill.com
  • Shields RM, Temelso B, Archer KA, et al. Accurate predictions of water cluster formation, (H2O)n=2−10. J Phys Chem A. 2010;114:11725–11737.
  • Temelso B, Archer KA, Shields GC. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J Phys Chem A. 2011;115:12034–12046.
  • Malloum A, Conradie J. Structures, binding energies and non-covalent interactions of furan clusters. J Mol Graph Mod. 2022;111:108102.
  • Malloum A, Conradie J. Non-covalent interactions in dimethylsulfoxide (DMSO) clusters and DFT benchmarking. J Mol Liq. 2022;350:118522.
  • Malloum A, Conradie J. Dimethylformamide clusters: non-covalent bondings, structures and temperature-dependence. Mol Phys. 2022;120:2118188.
  • Wang Y, Babin V, Bowman JM, et al. The water hexamer: cage, prism, or both. full dimensional quantum simulations say both. J Am Chem Soc. 2012;134:11116–11119.
  • Pérez C, Muckle MT, Zaleski DP, et al. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science. 2012;336:897–901.
  • Rakshit A, Yamaguchi T, Asada T, et al. Understanding the structure and hydrogen bonding network of (H 2 O) 32 and (H 2 O) 33 : an improved monte carlo temperature basin paving (MCTBP) method and quantum theory of atoms in molecules (QTAIM) analysis. RSC Adv. 2017;7:18401–18417.
  • Cabani S, Gianni P, Mollica V, et al. Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J Solution Chem. 1981;10:563–595.
  • Guedes R, Coutinho K, Costa Cabral B, et al. Differential hydration of phenol and phenoxy radical and the energetics of the phenol O- H bond in solution. J Phys Chem B. 2003;107:4304–4310.
  • Malloum A, Conradie J. Molecular simulations of the adsorption of aniline from waste-water. J Mol Graph Mod. 2022;117:108287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.