184
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics investigation of the mechanical properties and fracture behaviour of hydroxyl-functionalised carbon and silicon carbide nanotubes-reinforced polymer nanocomposites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 415-426 | Received 06 May 2022, Accepted 06 Dec 2022, Published online: 12 Jan 2023

References

  • Lam C-w, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189–217.
  • Ketabi S, Hashemianzadeh S. Interaction of pyrimidine nucleobases with silicon carbide nanotube: effect of functionalization on stability and solvation. J Phys Theor Chem. 2012;9(3):163–172.
  • Mercan K, Civalek Ö. Buckling analysis of silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos Part B Eng. 2017;114:34–45.
  • Adhikari K, Ray A. On the existence and stability of double-walled armchair silicon carbide nanotubes. Solid State Commun. 2011;151(6):430–435.
  • Geckeler KE, Premkumar T. Carbon nanotubes: are they dispersed or dissolved in liquids? Nanoscale Res Lett. 2011;6(1):1–3.
  • Ajori S, Ansari R, Haghighi S. A molecular dynamics study on the buckling behavior of cross-linked functionalized carbon nanotubes under physical adsorption of polymer chains. Appl Surf Sci. 2018;427:704–714.
  • Bandaru PR. Electrical properties and applications of carbon nanotube structures. J Nanoscience Nanotechnol. 2007;7(4-5):1239–1267.
  • Talla JA. Electronic properties of silicon carbide nanotube with Stone Wales defects under uniaxial pressure: a computational study. Comput Condens Matter. 2019;19:e00378.
  • Setoodeh A, Jahanshahi M, Attariani H. Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes. Comput Mater Sci. 2009;47(2):388–397.
  • Wang Y, Zhang R, Teo BK, et al. Silicon–carbon nanocomposites: theoretical investigations. J Mol Struct. 2010;982(1-3):87–90.
  • Malek K, Sahimi M. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J Chem Phys. 2010;132(1):014310.
  • Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes. Phys Rev B. 2004;69(11):115322.
  • Ganji M, Ahaz B. First principles simulation of molecular oxygen adsorption on SiC nanotubes. Commun Theor Phys. 2010;53(4):742–748.
  • Miyamoto Y, Yu BD. Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett. 2002;80(4):586–588.
  • Taguchi T, Igawa N, Yamamoto H, et al. Synthesis of silicon carbide nanotubes. J Am Ceram Soc. 2005;88(2):459–461.
  • Memarian F, Fereidoon A, Khodaei S, et al. Molecular dynamic study of mechanical properties of single/double wall SiCNTs: consideration temperature, diameter and interlayer distance. Vacuum. 2017;139:93–100.
  • Khademi M, Sahimi M. Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes. J Chem Phys. 2011;135(20):204509.
  • Eghbalian M, Ansari R, Rouhi S. Mechanical properties of oxygen-functionalized silicon carbide nanotubes: a molecular dynamics study. Phys B Condens Matter. 2021;610:412939.
  • Ansari R, Mirnezhad M, Rouhi H. Mechanical properties of chiral silicon carbide nanotubes under hydrogen adsorption: a molecular mechanics approach. Nano. 2014;9(04):1450043.
  • Sheng-Jie W, Chun-Lai Z, Zhi-Guo W. Melting of single-walled silicon carbide nanotubes: density functional molecular dynamics simulation. Chin Phys Lett. 2010;27(10):106101.
  • Behzad S, Moradian R, Chegel R. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes. Phys Lett A. 2010;375(2):174–179.
  • Mahdizadeh SJ, Goharshadi E. Hydrogen storage on silicon, carbon, and silicon carbide nanotubes: a combined quantum mechanics and grand canonical Monte Carlo simulation study. Int J Hydrogen Energy. 2014;39(4):1719–1731.
  • Khatti Z, Hashemianzadeh SM, Shafiei SA. A molecular study on drug delivery system based on carbon nanotube compared to silicon carbide nanotube for encapsulation of platinum-based anticancer drug. Adv Pharm Bull. 2018;8(1):163–167.
  • Mehrjouei E, Akbarzadeh H, Shamkhali AN, et al. Delivery of cisplatin anti-cancer drug from carbon, boron nitride, and silicon carbide nanotubes forced by Ag-nanowire: a comprehensive molecular dynamics study. Mol Pharm. 2017;14(7):2273–2284.
  • Bai D. Size, morphology and temperature dependence of the thermal conductivity of single-walled silicon carbide nanotubes. Fullerenes Nanotubes Carbon Nanostruct. 2011;19(4):271–288.
  • Zhao M, Xia Y, Li F, et al. Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B. 2005;71(8):085312.
  • Wu I, Guo G. Optical properties of SiC nanotubes: an ab initio study. Phys Rev B. 2007;76(3):035343.
  • Zhang Y, Huang H. Stability of single-wall silicon carbide nanotubes – molecular dynamics simulations. Comput Mater Sci. 2008;43(4):664–669.
  • Mpourmpakis G, Froudakis GE, Lithoxoos GP, et al. Sic nanotubes: a novel material for hydrogen storage. Nano Lett. 2006;6(8):1581–1583.
  • Barghi SH, Tsotsis TT, Sahimi M. Experimental investigation of hydrogen adsorption in doped silicon-carbide nanotubes. Int J Hydrogen Energy. 2016;41(1):369–374.
  • Ajori S, Haghighi S, Ansari R. Buckling behavior of carbon nanotubes functionalized with carbene under physical adsorption of polymer chains: a molecular dynamics study. Braz J Phys. 2017;47(6):606–616.
  • Xiao B, Hu H, Zhao J-x, et al. Functionalization of silicon carbide nanotube by dichlorocarbene: a density functional theory study. Phys E Low-Dimension Syst Nanostruct. 2014;56:377–385.
  • Pham-Huu C, Keller N, Ehret G, et al. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal. 2001;200(2):400–410.
  • Wang X, Liew KM. Silicon carbide nanotubes serving as a highly sensitive gas chemical sensor for formaldehyde. J Phys Chem C. 2011;115(21):10388–10393.
  • Eghbalian M, Ansari R, Rouhi S. Effects of geometrical parameters and functionalization percentage on the mechanical properties of oxygenated single-walled carbon nanotubes. J Mol Model. 2021;27(12):1–17.
  • Rouhi S, Ansari R, Nikkar A. Finite element modeling of the vibrational behavior of single-walled silicon carbide nanotube/polymer nanocomposites. J Solid Mech. 2018;10(4):929–939.
  • Pan H, Si X. Molecular dynamics simulations of diameter dependence tensile behavior of silicon carbide nanotubes. Phys B Condens Matter. 2009;404(12-13):1809–1812.
  • Ansari R, Rouhi S, Eghbalian M. On the elastic properties of curved carbon nanotubes/polymer nanocomposites: a modified rule of mixture. J Reinf Plastics Compos. 2017;36(14):991–1008.
  • Pal T, Banerjee S, Manna P, et al. Characteristics of conducting polymers. In: Springer Series in Materials Science. 2020. p. 247–268.
  • Khan WS, Hamadneh NN, Khan WA. Polymer nanocomposites–synthesis techniques, classification and properties. Sci Appl Tailored Nanostruct. 2016;50–67.
  • Eghbalian M, Ansari R, Bidgoli MO, et al. Finite element investigation of the geometrical parameters of waviness carbon nanotube on directional young’s and shear elastic modulus of polymer nanocomposites. J Inst Eng (India) Ser D. 2022. doi:10.1007/s40033-022-00414-1
  • Shubhra QT, Alam AM, Quaiyyum MA. Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater. 2013;26(3):362–391.
  • Gopanna A, Rajan KP, Thomas SP, et al. Polyethylene and polypropylene matrix composites for biomedical applications. In: Materials for biomedical engineering. Elsevier; 2019. p. 175–216.
  • Haghighi S, Ansari R, Ajori S. A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Design. 2020;16(2):387–400.
  • Eghbalian M, Ansari R, Haghighi S. On the mechanical properties and fracture analysis of polymer nanocomposites reinforced by functionalized silicon carbide nanotubes: a molecular dynamics investigation. J Mol Graphics Modell. 2022;111:108086.
  • Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37(12):6991–7000.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39(8):5566–5568.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford University Press. Oxford, England; 2017.
  • Ajori S, Haghighi S, Ansari R. Tensile characteristics of carbene-functionalized CNTs subjected to physisorption of polymer chains: a molecular dynamics study. J Mol Model. 2019;25(11):1–20.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.
  • Eghbalian M, Ansari R, Haghighi S. A combined molecular dynamics-finite element multiscale modeling to analyze the mechanical properties of randomly dispersed, chemisorbed carbon nanotubes/polymer nanocomposites. Mechanics of Advanced Materials and Structures. Aug. 2022;1–17.
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157–2164.
  • Arash B, Park HS, Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarse-grained model. Compos Part B Eng. 2015;80:92–100.
  • Rouhi S, Alizadeh Y, Ansari R, et al. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone. Mod Phys Lett B. 2015;29(26):1550155.
  • Zhou X, Liu X, Sansoz F, et al. Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites. Appl Phys A. 2018;124(7):1–11.
  • Frankland S, Harik V, Odegard G, et al. The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos Sci Technol. 2003;63(11):1655–1661.
  • Eghbalian M, Ansari R, Haghighi S. Molecular dynamics study of mechanical properties and fracture behavior of carbon and silicon carbide nanotubes under chemical adsorption of atoms. Diamond Relat Mater. 2022;121:108764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.