128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation on CH4 combustion in CO2/O2/N2 atmosphere subjected to electric field

, , ORCID Icon & ORCID Icon
Pages 792-798 | Received 27 Nov 2022, Accepted 11 Mar 2023, Published online: 06 Apr 2023

References

  • Li Y, Wei Y, Zhang X, et al. Regional and provincial CO2 emission reduction task decomposition of China's 2030 carbon emission peak based on the efficiency, equity and synthesizing principles. Struct Change Econ Dyn. 2020;53:237–256.
  • Scheffknecht G, Al-Makhadmeh L, Schnell U, et al. Oxy-fuel coal combustion – a review of the current state-of-the-art. Int J Greenhouse Gas Control. 2011;5:16–35.
  • Heil P, Toporov D, Förster M, et al. Experimental investigation on the effect of O2 and CO2 on burning rates during oxyfuel combustion of methane. Proc Combust Inst. 2011;33(2):3407–3413.
  • Liu Y, Xue Q, Zuo H, et al. Effects of CO2 and N2 dilution on the characteristics and NOX emission of H2/CH4/CO/air partially premixed flame. Int J Hydro Energy. 2022;47(35):15909–15921.
  • Mehrpooya M, Ansarinasab H, Sharifzadeh M MM, et al. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process. J Power Sour. 2017;364:299–315.
  • Buhre B JP, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation. Progr Energy Combust Sci. 2005;31(4):283–307.
  • Molina A, Shaddix C R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst. 2007;31(2):1905–1912.
  • Shaddix C R, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst. 2009;32(2):2091–2098.
  • Koohestanian E, Shahraki F. Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J Environ Chem Eng. 2021;9(4):105777.
  • Zigan L. Overview of electric field applications in energy and process engineering. Energies. 2018;11(6):1361.
  • Liu H, Cai W. Recent progress in electric-field assisted combustion: a brief review. Frontiers in Energy. 2022;16(6): 883–899.
  • Lacoste D A, Xiong Y, Moeck J P, et al. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. Proc Combust Inst. 2017;36(3):4183–4192.
  • Tinajero J, Dunn-Rankin D. Non-premixed axisymmetric flames driven by ion currents. Combust Flame. 2019;199:365–376.
  • Park D G, Choi B C, Cha M S, et al. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames. Combust Sci Technol. 2014;186(4-5):644–656.
  • Chien Y C, Escofet-Martin D, Dunn-Rankin D. Ion current and carbon monoxide release from an impinging methane/air coflow flame in an electric field. Combust Flame. 2019;204:250–259.
  • Uddi M, Jiang N, Mintusov E, et al. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proc Combust Inst. 2009;32(1):929–936.
  • Luo Y, Gan Y, Jiang X. Investigation of the effect of DC electric field on a small ethanol diffusion flame. Fuel. 2017;188:621–627.
  • Belhi M, Lee B J, Cha M S, et al. Three-dimensional simulation of ionic wind in a laminar premixed Bunsen flame subjected to a transverse DC electric field. Combust Flame. 2019;202:90–106.
  • Sun W, Uddi M, Ombrello T, et al. Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. Proc Combust Inst. 2011;33(2):3211–3218.
  • Zhang Y, Wu Y, Yang H, et al. Effect of high-frequency alternating electric fields on the behavior and nitric oxide emission of laminar non-premixed flames. Fuel. 2013;109:350–355.
  • Duan H, Wu X, Sun T, et al. Effects of electric field intensity and distribution on flame propagation speed of CH4/O2/N2 flames. Fuel. 2015;158:807–815.
  • Imamura O, Chen B, Nishida S, et al. Combustion of ethanol fuel droplet in vertical direct current electric field. Proc Combust Inst. 2011;33(2):2005–2011.
  • Agrawalla S, Van Duin A CT. Development and application of a ReaxFF reactive force field for hydrogen combustion. J Phys Chem A. 2011;115(6):960–972.
  • Qiu Y, Zhong W, Yu A. Simulations on pressurized oxy-coal combustion and gasification by molecular dynamics method with ReaxFF. Adv Powder Technol. 2022;33(5):103557.
  • Chen Z, Sun W, Zhao L. High-temperature and high-pressure pyrolysis of hexadecane: molecular dynamic simulation based on reactive force field (ReaxFF). J Phys Chem A. 2017;121(10):2069–2078.
  • Jiang X Z, Feng M, Zeng W, et al. Study of mechanisms for electric field effects on ethanol oxidation via reactive force field molecular dynamics. Proc Combust Inst. 2019;37(4):5525–5535.
  • Sun F, Zeng W. Electric field effects on hydrogen/methane oxidation: A reactive force field based molecular dynamics study. Int J Hydro Energy. 2020;45(39):20194–20199.
  • Hong D, Guo X. A reactive molecular dynamics study of CH4 combustion in O2/CO2/H2O environments. Fuel Process Technol. 2017;167:416–424.
  • Song L, Zhao F Q, Xu S Y, et al. ReaxFF study on combustion mechanism of ethanol/nitromethane. Fuel. 2021;303:121221.
  • Chenoweth K, Van Duin A CT, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A. 2008;112(5):1040–1053.
  • Van Duin A CT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105(41):9396–9409.
  • Zeng J, Cao L, Xu M, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat Commun. 2020;11(1):5713.
  • Berendsen H JC, Postma J PM, Van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simulat Mater Sci Eng. 2010;18(1):2154–2162.
  • Glarborg P, Bentzen L LB. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy & Fuels. 2008;22(1):291–296.
  • Watanabe H, Arai F, Okazaki K. Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments. Combust Flame. 2013;160(11):2375–2385.
  • Turns SR. Introduction to combustion. New York (NY): McGraw-Hill Companies; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.