137
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of methanol on the pyrolysis behaviour of kerogen by ReaxFF molecular dynamics simulations

, , , &
Pages 43-54 | Received 12 May 2023, Accepted 05 Oct 2023, Published online: 26 Oct 2023

References

  • Hu S, Wu H, Liang X, et al. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model. Chemosphere. 2022;287:131987. doi:10.1016/j.chemosphere.2021.131987
  • Kang Z, Zhao Y, Yang D. Review of oil shale in-situ conversion technology. Appl Energy. 2020;269:115121. doi:10.1016/j.apenergy.2020.115121
  • Tucker JD, Masri B, Lee S. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energy Sources. 2000;22(5):453–463. doi:10.1080/00908310050013866
  • Johannes I, Luik H, Palu V, et al. Synergy in co-liquefaction of oil shale and willow in supercritical water. Fuel. 2015;144:180–187. doi:10.1016/j.fuel.2014.12.031
  • Petrov S, Ibragimova D, Safiulina A, et al. Conversion of organic matter in the carbonaceous medium in the supercritical water. J Pet Sci Eng. 2017;159:497–505. doi:10.1016/j.petrol.2017.09.060
  • Sinag A, Canel M. Comparison of retorting and supercritical extraction techniques on gaining liquid products from Goynuk oil shale (Turkey). Energy Sources. 2004;26(8):739–749. doi:10.1080/00908310490445599
  • Amer MW, Alhesan JSA, Marshall M, et al. Energy efficient method of supercritical extraction of oil from oil shale. Energy Conversion Manage. 2022;252:115108. doi:10.1016/j.enconman.2021.115108
  • Yang T, Wu K, Li B, et al. Conversion of lignin into phenolic-rich oil by two-step liquefaction in sub-supercritical ethanol system assisted by carbon dioxide. J Energy Inst. 2021;94:329–336. doi:10.1016/j.joei.2020.10.001
  • Yuan Z, Jia G, Cui X, et al. Effects of temperature and time on supercritical methanol co-liquefaction of rice straw and linear low-density polyethylene wastes. Energy. 2022;245:123315. doi:10.1016/j.energy.2022.123315
  • Wu X-F, Zhang J-J, Huang Y-H, et al. Comparative investigation on bio-oil production from eucalyptus via liquefaction in subcritical water and supercritical ethanol. Ind Crops Prod. 2019;140:111695. doi:10.1016/j.indcrop.2019.111695
  • Liang S, Hou Y, Wu W, et al. New insights into the primary reaction products of naomaohu coal via breaking weak bonds with supercritical ethanolysis. Energy Fuels. 2019;33(7):6294–6301. doi:10.1021/acs.energyfuels.9b01154
  • Liu F-j, Bie L-l, Guo J-p, et al. Occurrence forms and molecular structural characteristics of the organic nitrogen in lignite. J Fuel Chem Technol. 2020;48(7):776–784. doi:10.1016/S1872-5813(20)30056-6
  • Liu Q, Hou Y, Wu W, et al. New insight into the chemical structures of Huadian kerogen with supercritical ethanolysis: cleavage of weak bonds to small molecular compounds. Fuel Process Technol. 2018;176:138–145. doi:10.1016/j.fuproc.2018.03.029
  • Kai X, Zhang W, Li B, et al. Liquefaction of oil shale in supercritical ethanol. Oil Shale. 2018;35(3):279–289. doi:10.3176/oil.2018.3.02
  • Lu Z, Liu Z, Zhao X, et al. Coupling of methoxy group with organic matter during methanolysis of heavy hydrocarbon using oil shale as an example. J Anal Appl Pyrolysis. 2021;158:105264.
  • Liu J, Mao Q, Wang G, et al. Removal and transformation mechanisms of nitrogen and sulfur in petcoke supercritical water gasification via ReaxFF simulation. Mol Simul. 2022;48(3):209–220. doi:10.1080/08927022.2021.2007908.
  • Van Duin AC, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105(41):9396–9409. doi:10.1021/jp004368u
  • Paajanen A, Vaari J. High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study. Cellulose. 2017;24(7):2713–2725. doi:10.1007/s10570-017-1325-7
  • Zhang T, Li X, Qiao X, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations. Energy Fuels. 2016;30(4):3140–3150. doi:10.1021/acs.energyfuels.6b00247
  • Pang Y, Zhu X, Li N, et al. Investigation on reaction mechanism for CO2 gasification of softwood lignin by ReaxFF MD method. Energy. 2023;267:126533. doi:10.1016/j.energy.2022.126533
  • Li G-Y, Ding J-X, Zhang H, et al. ReaxFF simulations of hydrothermal treatment of lignite and its impact on chemical structures. Fuel. 2015;154:243–251. doi:10.1016/j.fuel.2015.03.082
  • Liang Y-H, Wang F, Zhang H, et al. A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite. Fuel Process Technol. 2016;147:32–40. doi:10.1016/j.fuproc.2015.09.007
  • Xu F, Wang Q, Wu C. Reactive force-field simulation of the effect of heating rate on pyrolysis behavior of lignite. Korean J Chem Eng. 2022;39(3):576–585. doi:10.1007/s11814-021-1009-8
  • Zhan J-H, Wu R, Liu X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation. Fuel. 2014;134:283–292. doi:10.1016/j.fuel.2014.06.005
  • Wang J-P, Wang Y-N, Li G-Y, et al. ReaxFF molecular dynamics study on nitrogen-transfer mechanism in the hydropyrolysis process of lignite. Chem Phys Lett. 2020;744:137214. doi:10.1016/j.cplett.2020.137214
  • Xu F, Liu H, Wang Q, et al. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations. Fuel. 2019;256:115884. doi:10.1016/j.fuel.2019.115884
  • Rismiller SC, Groves MM, Meng M, et al. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations. Fuel. 2018;215:835–843. doi:10.1016/j.fuel.2017.11.108
  • Chen B, Wei X-Y, Yang Z-S, et al. Reaxff reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds. Energy Fuels. 2012;26(2):984–989. doi:10.1021/ef201234j
  • Liu X, Zhan J-H, Lai D, et al. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels. 2015;29(5):2987–2997. doi:10.1021/acs.energyfuels.5b00084
  • Qian Y, Zhan J-H, Lai D, et al. Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation. Int J Hydrogen Energy. 2016;41(28):12093–12100. doi:10.1016/j.ijhydene.2016.06.036
  • Wang X, Wang Q, Pan S, et al. The non-isothermal thermal decomposition evolution of the Fushun oil shale kerogen based on ReaxFF molecular dynamics simulation. J Anal Appl Pyrolysis. 2023;169:105869), doi:10.1016/j.jaap.2023.105869
  • Zhang Z, Guo L, Zhang H, et al. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations. Int J Hydrogen Energy. 2019;44(47):25335–25346. doi:10.1016/j.ijhydene.2019.08.036
  • Zhao F, Li B, Zhang L, et al. The mechanism of superheated steam affecting the quality of in-situ pyrolysates of oil shale kerogen: part A-saturation of pyrolytic organics. Fuel. 2022;323:124331. doi:10.1016/j.fuel.2022.124331
  • Guo W, Zhang X, Deng S, et al. Enhanced pyrolysis of Huadian oil shale at high temperature in the presence of water and air atmosphere. J Pet Sci Eng. 2022;215:110623. doi:10.1016/j.petrol.2022.110623
  • Zhang Z, Guo L, Zhang H. A ReaxFF molecular dynamics study on the hydropyrolysis process of Huadian oil shale kerogen. Mol Simul. 2021;47(4):334–345. doi:10.1080/08927022.2021.1872788
  • Zhang Z, Guo L, Zhang H. A ReaxFF molecular dynamics study on the mechanism and the typical pyrolysis gases in the pyrolysis process of Longkou oil shale kerogen. Mol Simul. 2020;46(15):1191–1199. doi:10.1080/08927022.2020.1809658
  • Zhang Z, Chai J, Zhang H, et al. Structural model of Longkou oil shale kerogen and the evolution process under steam pyrolysis based on ReaxFF molecular dynamics simulation. Energy Sources Part A Recov Util Environ Effects. 2019;43(2):252–265.
  • Zhang Z, Zhao L, Zhuang L, et al. The effect of acid treatment on pyrolysis of Longkou oil shale. Energy Sources Part A Recov Util Environ Effects. 2019;41(13):1605–1614. doi:10.1080/15567036.2018.1539136
  • Huang H-j, Yuan X-z. Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci. 2015;49:59–80. doi:10.1016/j.pecs.2015.01.003
  • Castro-Marcano F, Kamat AM, Russo MF, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame. 2012;159(3):1272–1285. doi:10.1016/j.combustflame.2011.10.022
  • Fletcher TH, Kerstein AR, Pugmire RJ, et al. Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type. Energy Fuels. 1992;6(4):414–431. doi:10.1021/ef00034a011
  • Zheng M, Li X, Liu J, et al. Pyrolysis of liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis. Energy & Fuels. 2013;28(1):522–534.
  • Kang J, Myint AA, Sim S, et al. Kinetics of the upgrading of heavy oil in supercritical methanol. J Supercrit Fluids. 2018;133:133–138. doi:10.1016/j.supflu.2017.10.005
  • Guo L, Zhou Z, Chen L, et al. Study of the pyrolysis of coals of different rank using the ReaxFF reactive force field. J Mol Model. 2019;25(6):174), doi:10.1007/s00894-019-4044-1
  • Lu H-Y, Wei X-Y, Yu R, et al. Sequential thermal dissolution of huolinguole lignite in methanol and ethanol. Energy Fuels. 2011;25(6):2741–2745. doi:10.1021/ef101734f
  • Yang W-q, Mao K-m, Mo W-l, et al. Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path. J Fuel Chem Technol. 2022;50(4):396–407. doi:10.1016/S1872-5813(21)60178-0
  • Galebach PH, McClelland DJ, Eagan NM, et al. Production of alcohols from cellulose by supercritical methanol depolymerization and hydrodeoxygenation. ACS Sustain Chem Eng. 2018;6(3):4330–4344. doi:10.1021/acssuschemeng.7b04820
  • Yu X-Y, Wei X-Y, Li Z-K, et al. Two-step depolymerization of Zhaotong lignite in ethanol. Fuel. 2017;196:391–397. doi:10.1016/j.fuel.2017.01.085
  • G-Hourcade ML, Torrente C, Ángel Galán Á. Study of the solubility of kerogen from oil shales (Puertollano, Spain) in supercritical toluene and methanol. Fuel. 2007;86(5–6):698–705. doi:10.1016/j.fuel.2006.07.013
  • Tang S-R, Zong Z-M, Zhou L, et al. Molecular composition of soluble fraction from depolymerized cornstalk powder in supercritical methanol and ethanol. Renew Energy. 2010;35(5):946–951. doi:10.1016/j.renene.2009.11.037
  • Wu Z, Xu Z. Experimental and molecular dynamics investigation on the pyrolysis mechanism of Chang 7 type-II oil shale kerogen. J Pet Sci Eng. 2022;209:109878. doi:10.1016/j.petrol.2021.109878
  • Saha B, Patra AS, Mukherjee AK. Insights on the initial stages of carbonization of sub-bituminous coal. J Mol Graphics Model. 2021;106:107868. doi:10.1016/j.jmgm.2021.107868
  • Isa KM, Abdullah TAT, Ali UFM. Hydrogen donor solvents in liquefaction of biomass: a review. Renew Sustain Energy Rev. 2018;81:1259–1268. doi:10.1016/j.rser.2017.04.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.