164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

DFT Study of adsorption and diffusion of CO2 on bimetallic surfaces

, ORCID Icon & ORCID Icon
Pages 75-88 | Received 26 Jul 2023, Accepted 19 Oct 2023, Published online: 01 Nov 2023

References

  • Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proceedings of the National Academy of Sciences. 2006;103(39):14288–14293. doi:10.1073/pnas.0606291103
  • Nie X, Jiang X, Wang H, et al. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal. 2018;8(6):4873–4892. 2018/06/01. doi:10.1021/acscatal.7b04150
  • Shi Z, Pan M, Wei X, et al. Cu-In intermetallic compounds as highly active catalysts for CH3OH formation from CO2 hydrogenation. Int J Energy Res. 2022;46(2):1285–1298. doi:10.1002/er.7246
  • Sang G, Ran J, Huang X, et al. Understanding the role of Ga on the activation mechanism of CO2 over modified Cu surface by DFT calculation. Mol Catal. 2022;528:112477. 2022/08/01/. doi:10.1016/j.mcat.2022.112477
  • Niu J, Liu H, Jin Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: insights from experimental work and theoretical analysis. Int J Hydrog Energy. 2022;47(15):9183–9200. doi:10.1016/j.ijhydene.2022.01.021
  • de Souza EF, Appel LG. Oxygen vacancy formation and their role in the CO2 activation on Ca doped ZrO2 surface: an ab-initio DFT study. Appl Surf Sci. 2021;553:149589. 2021/07/01/. doi:10.1016/j.apsusc.2021.149589
  • Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [10.1039/C3EE00056G]. Energy Environ Sci. 2013;6(6):1711–1731.
  • Falkner R. The Paris agreement and the new logic of international climate politics. Int Aff. 2016;09/01(92):1107–1125. doi:10.1111/1468-2346.12708
  • Khan MU, Wang L, Liu Z, et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew Chem Int Ed. 2016;55(33):9548–9552. doi:10.1002/anie.201602512
  • Wang Z-y, Guo R-t, Shi X, et al. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Appl Surf Sci. 2019;475:334–341. doi:10.1016/j.apsusc.2018.12.281
  • Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev. 2020;120(15):7984–8034. 2020/08/12. doi:10.1021/acs.chemrev.9b00723
  • Smykowski D, Szyja B, Szczygieł J. DFT modeling of CO2 adsorption on Cu, Zn, Ni, Pd/DOH zeolite. J Mol Graph. 2013;41:89–96. doi:10.1016/j.jmgm.2013.01.009
  • Han X, Li M, Chang X, et al. Hollow structured Cu@ ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. J Energy Chem. 2022;71:277–287. doi:10.1016/j.jechem.2022.03.034
  • Palomino RM, Ramírez PJ, Liu Z, et al. Hydrogenation of CO(2) on ZnO/Cu(100) and ZnO/Cu(111) catalysts: role of copper structure and metal-oxide interface in methanol synthesis. J Phys Chem B. 2018 Jan 18;122(2):794–800. doi:10.1021/acs.jpcb.7b06901
  • Xiao Z, Yu S, Li Y, et al. Materials development and potential applications of transparent ceramics: a review. Mater Sci Eng R Rep. 2020;139:100518. 2020/01/01/. doi:10.1016/j.mser.2019.100518
  • Liu L, Fan F, Bai M, et al. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu (111) surfaces. Mol Catal. 2019;466:26–36. doi:10.1016/j.mcat.2019.01.009
  • Lin F, Jiang X, Boreriboon N, et al. Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. Appl Catal A: Gen. 2019;585:117210. doi:10.1016/j.apcata.2019.117210
  • Liu L, Fan F, Bai M, et al. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces. Mol Catal. 2019;466:26–36. 2019/04/01/. doi:10.1016/j.mcat.2019.01.009
  • Zhang M, Dou M, Yu Y. DFT study of CO 2 conversion on InZr 3 (110) surface. Phys Chem Chem Phys. 2017;19(42):28917–28927. doi:10.1039/C7CP03859C
  • Liu L, Fan F, Jiang Z, et al. Mechanistic study of Pd–Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. J Phys Chem C. 2017;121(47):26287–26299. 2017/11/30. doi:10.1021/acs.jpcc.7b06166
  • Gonzalez S, Illas F. CO adsorption on monometallic Pd, Rh, Cu and bimetallic PdCu and RhCu monolayers supported on Ru(0001). Surf Sci. 2005;598(1):144–155. 2005/12/20/. doi:10.1016/j.susc.2005.08.035
  • Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys. 2018;149(17):174705. doi:10.1063/1.5053894
  • Santos-Flórez PA, Ruestes CJ, de Koning M. Uniaxial-deformation behavior of ice I h as described by the TIP4P/Ice and mW water models. J Chem Phys. 2018;149(16):164711. doi:10.1063/1.5048517
  • Liu P, Nørskov JK. Ligand and ensemble effects in adsorption on alloy surfaces. Phys Chem Chem Phys. 2001;3(17):3814–3818. doi:10.1039/b103525h
  • Zhang L, Henkelman G. Tuning the oxygen reduction activity of Pd shell nanoparticles with random alloy cores. J Phys Chem C. 2012;116(39):20860–20865. doi:10.1021/jp305367z
  • Jo DY, Lee MW, Kim CH, et al. Interplay of ligand and strain effects in CO adsorption on bimetallic Cu/M (M = Ni, Ir, Pd, and Pt) catalysts from first-principles: effect of different facets on catalysis. Catal Today. 2021;359:57–64. 2021/01/01/. doi:10.1016/j.cattod.2019.05.031
  • İnoğlu N, Kitchin JR. New solid-state table: estimating d-band characteristics for transition metal atoms. Mol Simul. 2010;36(7-8):633–638. doi:10.1080/08927022.2010.481794
  • Kitchin JR, Nørskov JK, Barteau MA, et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93(15):156801. doi:10.1103/PhysRevLett.93.156801
  • Takehiro N, Liu P, Bergbreiter A, et al. Hydrogen adsorption on bimetallic PdAu (111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Phys Chem Chem Phys. 2014;16(43):23930–23943. doi:10.1039/C4CP02589J
  • Ham HC, Stephens JA, Hwang GS, et al. Pd ensemble effects on oxygen hydrogenation in AuPd alloys: a combined density functional theory and monte carlo study. Catal Today. 2011;165(1):138–144. 2011/05/16/. doi:10.1016/j.cattod.2011.02.006
  • Wang Y, Cao L, Libretto NJ, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J Am Chem Soc. 2019;141(42):16635–16642. doi:10.1021/jacs.9b05766
  • Zhang R, Wang Y, Wang B, et al. Probing into the effects of cluster size and Pd ensemble as active center on the activity of H2 dissociation over the noble metal Pd-doped Cu bimetallic clusters. Mol Catal. 2019;475:110457. doi:10.1016/j.mcat.2019.110457
  • Hagman B, Posada-Borbón A, Schaefer A, et al. Steps control the dissociation of CO2 on Cu(100). J Am Chem Soc. 2018;140(40):12974–12979. 2018/10/10. doi:10.1021/jacs.8b07906
  • Liu Y, Chai X, Cai X, et al. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C−C bond formation. Angew Chem Int Ed. 2018;57(31):9775–9779. doi:10.1002/anie.201805319
  • Zhang Q, Li Y, Zhu H, et al. High-Performance of electrocatalytic CO2 reduction on defective graphene-supported Cu4S2 cluster. Catal. 2022;12(5):454. doi:10.3390/catal12050454
  • Jiang D, Li H, Wang S, et al. Insight the CO2 adsorption onto biomass-pyrolysis derived char via experimental analysis coupled with DFT calculation. Fuel. 2023;332:125948. doi:10.1016/j.fuel.2022.125948
  • Santiago-Rodríguez Y, Barreto-Rodríguez E, Curet-Arana MC. Quantum mechanical study of CO2 and CO hydrogenation on Cu(111) surfaces doped with Ga, Mg, and Ti. J Mol Catal A Chem. 2016;423:319–332. 2016/11/01/. doi:10.1016/j.molcata.2016.07.005
  • Ha NN, Thi Thu Ha N, Cam LM. New insight into the mechanism of carbon dioxide activation on copper-based catalysts: a theoretical study. J Mol Graph. 2021;107:107979. 2021/09/01/. doi:10.1016/j.jmgm.2021.107979
  • Nguyen TTH, Le VK, Le Minh C, et al. A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe, Co. Ni) carbon nanotube. Comput Theor Chem. 2017;1100:46–51. 2017/01/15/. doi:10.1016/j.comptc.2016.12.006
  • Sánchez-Portal D, Ordejón P, Artacho E, et al. Density-functional method for very large systems with LCAO basis sets. Int J Quantum Chem. 1997;65(5):453–461.<453::AID-QUA9>3.0.CO;2-V
  • José MS, Emilio A, Julian DG, et al. The SIESTA method for ab initio order-N materials simulation. J Condens Matter Phys. 2002;14(11):2745. 2002/03/08. doi:10.1088/0953-8984/14/11/302
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. 10/28/. doi:10.1103/PhysRevLett.77.3865
  • Troullier N, Martins J. A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 1990;74(7):613–616. 1990/05/01/. doi:10.1016/0038-1098(90)90686-6
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27(15):1787–1799. doi:10.1002/jcc.20495
  • Methfessel M. Paxton A. high-precision sampling for brillouin-zone integration in metals. Phys Rev B. 1989;40(6):3616. doi:10.1103/PhysRevB.40.3616
  • Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B. 1976;13(12):5188. doi:10.1103/PhysRevB.13.5188
  • Gómez E, Amaya-Roncancio S, Avalle LB, et al. DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces. Appl Surf Sci. 2017;420:1–8. doi:10.1016/j.apsusc.2017.05.032
  • Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113(22):9901–9904. doi:10.1063/1.1329672
  • Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci. 2006;36(3):354–360. doi:10.1016/j.commatsci.2005.04.010
  • Diaz-Lopez M, Guda SA, Joly Y. Crystal orbital overlap population and X-ray absorption spectroscopy. J Phys Chem A. 2020;124(29):6111–6118. doi:10.1021/acs.jpca.0c04084
  • Ou Z, Ran J, Niu J, et al. Effect of active site and charge transfer on methane dehydrogenation over different Co doped Ni surfaces by density functional theory. Int J Hydrog Energy. 2020;45(56):31849–31862. doi:10.1016/j.ijhydene.2020.08.187
  • Grabow LC, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011;1(4):365–384. 2011/04/01. doi:10.1021/cs200055d
  • Tezsevin I, Senkan S, Onal I, et al. DFT study on the hydrogenation of CO2 to methanol on Ho-doped Cu(211) surface. J Phys Chem C. 2020;124(41):22426–22434. 2020/10/15. doi:10.1021/acs.jpcc.0c04170
  • Kamalakannan S, Rudharachari Maiyelvaganan K, Palanisamy K, et al. Carbon dioxide adsorption and activation on ionic liquid decorated Au(111) surface: a DFT study. Chemosphere. 2022;286:131612. 2022/01/01/. doi:10.1016/j.chemosphere.2021.131612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.