79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hydrogen embrittlement of iron nanowires: investigating size and orientation dependence on loading behaviour

ORCID Icon
Pages 129-136 | Received 15 May 2023, Accepted 30 Oct 2023, Published online: 14 Nov 2023

References

  • Diao J, Gall K, Dunn ML. Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids. 2004;52:1935. doi:10.1016/j.jmps.2004.03.009
  • Koh SJA, Lee HP. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnology. 2006;17:3451. doi:10.1088/0957-4484/17/14/018
  • Olsson PAT. Transverse resonant properties of strained gold nanowires. J Appl Phys. 2010;108:34318. doi:10.1063/1.3460127
  • Morrissey LS, Handrigan SM, Nakhla S. Discrepancies in the mechanical properties of gold nanowires: The importance of potential type and equilibration method. Comput Mater Sci. 2020;171:109234. doi:10.1016/j.commatsci.2019.109234
  • Carpena-Núñez J, Yang D, Kim J-W, et al. Mechanical characterization of pristine and hydrogen-exposed palladium nanowires by in situ TEM. Nanotechnology. 2012;24:35701. doi:10.1088/0957-4484/24/3/035701
  • Yin S, Cheng G, Chang T-H, et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat Commun. 2019;10:1. doi:10.1038/s41467-018-07882-8
  • Ortiz M, Ovejero-Garcia J. Effect of hydrogen on Young's modulus of AISI 1005 and 1070 steels. J Mater Sci. 1992;27:6777–6781. doi:10.1007/BF01165968
  • Huang Y, Chen Q, Wang Y, et al. Hydrogen-induced cracking by nanovoids in 310 stainless steel. Sci China Ser E Technol Sci. 1998;41:372. doi:10.1007/BF02917009
  • Yu X, Gou F, Tian X. Molecular dynamics study of the effect of hydrogen on the mechanical properties of tungsten. J Nucl Mater. 2013;441:324. doi:10.1016/j.jnucmat.2013.06.018
  • Song HY, Zhang L, Xiao MX. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe. Phys Lett A. 2016;380:4049. doi:10.1016/j.physleta.2016.10.019
  • Xu TH, Zhu ZQ, Geng SF, et al. Molecular dynamics study of effect of hydrogen atoms on mechanical properties of α-Fe nanowires. Phys Lett A. 2017;381:3222. doi:10.1016/j.physleta.2017.08.012
  • Zhang F-J, Zhou B-H, Liu X, et al. Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica*. Chinese Phys B. 2020;29:27101. doi:10.1088/1674-1056/ab5fc5
  • Morrissey LS, Nakhla S. Molecular dynamics simulations of the hydrogen embrittlement base case: atomic hydrogen in a defect free single crystal. Molecular Simulation. Mol Simul. 2022;48(13):1214–1222.
  • Sainath G, Choudhary BK. Orientation dependent deformation behaviour of BCC iron nanowires. Comput Mater Sci. 2016;111:406. doi:10.1016/j.commatsci.2015.09.055
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi:10.1016/j.cpc.2021.108171
  • Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bull. 2012;37:513. doi:10.1557/mrs.2012.96
  • Jensen BD, Wise KE, Odegard GM. The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. J Comput Chem. 2015;36:1587. doi:10.1002/jcc.23970
  • Subramaniyan AK, Sun CT. Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct. 2008;45:4340. doi:10.1016/j.ijsolstr.2008.03.016
  • Ramasubramaniam A, Itakura M, Carter EA. Interatomic potentials for hydrogen in α-iron based on density functional theory. Phys Rev B. 2009;79:174101. doi:10.1103/PhysRevB.79.174101
  • Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater. 2013;12(2):145–151. doi:10.1038/nmat3479
  • Simmons G. (1965). Single crystal elastic constants and calculated aggregate properties. Southern Methodist Univ Dallas Tex.
  • Wang W, Yi C, Ma B.. Molecular dynamics simulation on the tensile behavior of gold nanowires with diameters between 3 and 6 nm. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2013;227:135.
  • Byggmästar J, Granberg F, Kuronen A, et al. Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations. J Appl Phys. 2015;117:14313. doi:10.1063/1.4905314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.