139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

ReaxFF study of the decarboxylation of methyl palmitate over binary metallic nickel-molybdenum catalysts

, &
Pages 176-188 | Received 01 Oct 2023, Accepted 08 Nov 2023, Published online: 23 Nov 2023

References

  • Sancheti SV, Yadav GD, Ghosh PK. Synthesis and application of novel NiMoK / TS-1 for selective conversion of fatty acid methyl esters / triglycerides to olefins. ACS Omega. 2020. doi:10.1021/acsomega.9b03993
  • Bergthorson JM, Thomson MJ. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sustain Energy Rev. 2015;42:1393–1417. doi:10.1016/j.rser.2014.10.034
  • da Cunha ME, Krause LC, Moraes MSA, et al. Beef tallow biodiesel produced in a pilot scale. Fuel Process Technol. 2009;90:570–575. doi:10.1016/j.fuproc.2009.01.001
  • Araújo BQ, Nunes RCDR, De Moura CVR, et al. Synthesis and characterization of beef tallow biodiesel. Energy Fuels. 2010;24:4476–4480. doi:10.1021/ef1004013
  • Bhatti HN, Hanif MA, Qasim M, et al. Biodiesel production from waste tallow. Fuel. 2008;87:2961–2966. doi:10.1016/j.fuel.2008.04.016
  • Dogaˇn TH, Temur H. Effect of fractional winterization of beef tallow biodiesel on the cold flow properties and viscosity. Fuel. 2013;108:793–796. doi:10.1016/j.fuel.2013.02.028
  • Teixeira LSG, Couto MB, Souza GS, et al. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel. Biomass Bioenergy. 2010;34:438–441. doi:10.1016/j.biombioe.2009.12.007
  • Magalhães AMS, Pereira E, Meirelles AJA, et al. Proposing blends for improving the cold flow properties of ethylic biodiesel. Fuel. 2019;253:50–59. doi:10.1016/j.fuel.2019.04.129
  • Yan K, Yang Y, Chai J, et al. Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl Catal B Environ. 2015;179:292–304. doi:10.1016/j.apcatb.2015.04.030
  • Ko CH, Park SH, Jeon JK, et al. Upgrading of biofuel by the catalytic deoxygenation of biomass. Korean J Chem Eng. 2012;29:1657–1665. doi:10.1007/s11814-012-0199-5
  • He L, Wu C, Cheng H, et al. Highly selective and efficient catalytic conversion of ethyl stearate into liquid hydrocarbons over a Ru/TiO2 catalyst under mild conditions. Catal Sci Technol. 2012;2:1328–1331. doi:10.1039/c2cy20157g
  • Han J, Sun H, Ding Y, et al. Palladium-catalyzed decarboxylation of higher aliphatic esters: towards a new protocol to the second generation biodiesel production. Green Chem. 2010;12:463–467. doi:10.1039/b917690j
  • Kumar P, Yenumala SR, Maity SK, et al. Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: effects of supports. Appl Catal A Gen. 2014;471:28–38. doi:10.1016/j.apcata.2013.11.021
  • Snåre M, Kubičková I, Mäki-Arvela P, et al. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res. 2006;45:5708–5715. doi:10.1021/ie060334i
  • Şenol OI, Viljava TR, Krause AOI. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today. 2005;100:331–335. doi:10.1016/j.cattod.2004.10.021
  • Şenol OI, Ryymin EM, Viljava TR, et al. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts. J Mol Catal A Chem. 2007;268:1–8. doi:10.1016/j.molcata.2006.12.006
  • Behtash S, Lu J, Heyden A. Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces. Catal Sci Technol. 2014;4:3981–3992. doi:10.1039/c4cy00511b
  • Bie Y, Gutierrez A, Viljava TR, et al. Hydrodeoxygenation of methyl heptanoate over noble metal catalysts: catalyst screening and reaction network. Ind Eng Chem Res. 2013;52:11544–11551. doi:10.1021/ie4012485
  • Chen J, Xu Q. Hydrodeoxygenation of biodiesel-related fatty acid methyl esters to diesel-range alkanes over zeolite-supported ruthenium catalysts. Catal Sci Technol. 2016;6:7239–7251. doi:10.1039/c6cy01242f
  • Zhai Y, Feng B, Meng Q, et al. Catalytic combustion of methyl butanoate over HZSM-5 zeolites. Chem Commun. 2021;57:2233–2244. doi:10.1039/D0CC07308C
  • Yang T, Jie Y, Li B, et al. Catalytic hydrodeoxygenation of crude bio-oil over an unsupported bimetallic dispersed catalyst in supercritical ethanol. Fuel Process Technol. 2016;148:19–27. doi:10.1016/j.fuproc.2016.01.004
  • Imai H, Kimura T, Terasaka K, et al. Hydroconversion of fatty acid derivative over supported Ni-Mo catalysts under low hydrogen pressure. Catal Today. 2018;303:185–190. doi:10.1016/j.cattod.2017.08.023
  • Kaddouri A, Tempesti E, Mazzocchia C. Comparative study of b -nickel molybdate phase obtained by conventional precipitation and the sol-gel method. Mater Res Bull. 2004;39:695–706. doi:10.1016/j.materresbull.2003.11.005
  • Hu K, Jeong S, Elumalai G, et al. Phase-dependent reactivity of nickel molybdates for electrocatalytic urea oxidation. ACS Appl Energy Mater. 2020;3:7535–7542. doi:10.1021/acsaem.0c00968
  • Yan L, Liu X, Deng J, et al. Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions. Green Chem. 2017;19:4600–4609. doi:10.1039/C7GC01720K
  • Kordulis C, Bourikas K, Gousi M, et al. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Appl Catal B Environ. 2016;181:156–196. doi:10.1016/j.apcatb.2015.07.042
  • Kumar P, Maity SK, Shee D. Role of NiMo alloy and Ni species in the performance of NiMo/alumina catalysts for hydrodeoxygenation of stearic acid: a kinetic study. ACS Omega. 2019;4:2833–2843. doi:10.1021/acsomega.8b03592
  • Wang Y, Xiong G, Liu X, et al. Structure and reducibility of NiO-MoO3/γ-Al 2O3 catalysts: effects of loading and molar ratio. J Phys Chem C. 2008;112:17265–17271. doi:10.1021/jp800182j
  • Aloui T, Guermazi H, Fourati N, et al. Synthesis and characterization of nanosheet NiMoO4 powder as a highly efficient and reusable catalyst for environmental remediation. J Nanoparticle Res. 2022;24; doi:10.1007/s11051-022-05417-3
  • Maldonado-Hódar FJ, Madeira LM, Portela MF, et al. Oxidative dehydrogenation of butane: changes in chemical, structural and catalytic behavior of Cs-doped nickel molybdate. J Mol Catal A Chem. 1996;111:313–323. doi:10.1016/1381-1169(96)00125-2
  • Madeira LM, Portela MF, Mazzocchia C. Nickel molybdate catalysts and their use in the selective oxidation of hydrocarbons. Catal Rev - Sci Eng. 2004;46:53–110. doi:10.1081/CR-120030053
  • Borowiecki T, Giecko G, Panczyk M. Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons. Appl Catal A Gen. 2002;230:85–97. doi:10.1016/S0926-860X(01)00997-8
  • Dürr RN, Maltoni P, Tian H, et al. From NiMoO 4 to γ-NiOOH: detecting the active catalyst phase by time resolved in situ and operando raman spectroscopy. ACS Nano. 2021;15:13504–13515. doi:10.1021/acsnano.1c04126
  • Zou J, Schrader GL. Multicomponent thin film molybdate catalysts for the selective oxidation of 1,3-butadiene. J Catal. 1996;161:667–686. doi:10.1006/jcat.1996.0229
  • van Duin ACT, Dasgupta S, Lorant F, et al. Reaxff: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409. doi:10.1021/jp004368u
  • Shin YK, Kwak H, Vasenkov AV, et al. Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst. ACS Catal. 2015;5:7226–7236. doi:10.1021/acscatal.5b01766
  • Chenoweth K, van Duin ACT, Persson P, et al. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. J Phys Chem C. 2008;112:14645–14654. doi:10.1021/jp802134x
  • Raymand D, van Duin ACT, Baudin M, et al. A reactive force field (ReaxFF) for zinc oxide. Surf Sci. 2008;602:1020–1031. doi:10.1016/j.susc.2007.12.023
  • Senftle TP, Hong S, Islam M, et al. The ReaxFF reactive force-field: development, applications and future directions. Nat Publ Gr. 2016. doi:10.1038/npjcompumats.2015.11
  • Nayir N, Mao Q, Wang T, et al. Modeling and simulations for 2D materials: a ReaxFF perspective. 2D Mater. 2023;10; doi:10.1088/2053-1583/acd7fd
  • Goddard WA, Van Duin A, Chenoweth K, et al. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x. Top Catal. 2006;38:93–103. doi:10.1007/s11244-006-0074-x
  • Zhang Y, Wang X, Li Q, et al. A ReaxFF molecular dynamics study of the pyrolysis mechanism of oleic-type triglycerides. Energy Fuels. 2015;29:5056–5068. doi:10.1021/acs.energyfuels.5b00720
  • Fukuda H, Kond A, Noda H. Biodiesel fuel production by transesterification. Biotechnol Adv. 2009;27. doi:10.1016/j.biotechadv.2008.10.008
  • He X, Zhu H, Huo Y, et al. Study on the formation mechanism of the pyrolysis products of lignite at different temperatures based on ReaxFF-MD. ACS Omega. 2021;6:35572–35583. doi:10.1021/acsomega.1c05275
  • Jain A, Ong SP, Hautier G, et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. doi:10.1063/1.4812323
  • Petousis I, Mrdjenovich D, Ballouz E, et al. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci Data. 2017;4:160134. doi:10.1038/sdata.2016.134
  • Villars P, Cenzual K. β-NiMoO4 (Ni[MoO4] ht) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012,” (n.d.). https://materials.springer.com/isp/crystallographic/docs/sd_1928937.
  • Zhou SH, Wang Y, Jiang C, et al. First-principles calculations and thermodynamic modeling of the Ni–Mo system. Mater Sci Eng A. 2005;397:288–296. doi:10.1016/j.msea.2005.02.037
  • Lycourghiotis S, Kordouli E, Bourikas K, et al. The role of promoters in metallic nickel catalysts used for green diesel production: a critical review. Fuel Process Technol. 2023;244; doi:10.1016/j.fuproc.2023.107690
  • Talirz L, Kumbhar S, Passaro E, et al. Materials Cloud, a platform for open computational science. Sci Data. 2020;7:299, doi:10.1038/s41597-020-00637-5
  • Watson GW, Kelsey ET, De Leeuw NH, et al. Atomistic simulation of dislocations, surfaces and interfaces in MgO. J Chem Soc - Faraday Trans. 1996;92:433–438. doi:10.1039/ft9969200433
  • Hirel P. Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun. 2015;197:212–219. doi:10.1016/j.cpc.2015.07.012
  • Sui M, Li F, Wang S, et al. Molecular dynamics simulation and experimental research on the oxidation reaction of methyl linoleate at low oxygen and high temperature. Fuel. 2021;305:121478. doi:10.1016/j.fuel.2021.121478
  • Aktulga HM, Fogarty JC, Pandit SA, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 2012;38:245–259. doi:10.1016/j.parco.2011.08.005
  • van Duin ACT, Goddard WA, Islam MM, et al. ReaxFF 2023.1, SCM, Theoretical Chemistry, (2023). www.scm.com.
  • Vasenkov A, Newsome D, Verners O, et al. Reactive molecular dynamics study of Mo-based alloys under high-pressure, high-temperature conditions. J Appl Phys. 2012;112:013511, doi:10.1063/1.4731793
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2010;18:015012. doi:10.1088/0965-0393/18/1/015012
  • Momma K, Izumi F. VESTA : a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658. doi:10.1107/S0021889808012016
  • Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2:73–78. doi:10.1002/wcms.81
  • Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci. 2017: 1–6. doi:10.1002/wcms.1327
  • Hur J, Abousleiman YN, Hull KL, et al. Reactive force fields for modeling oxidative degradation of organic matter in geological formations. RSC Adv. 2021;11:29298–29307. doi:10.1039/D1RA04397H
  • Agrawalla S, van Duin ACT. Development and application of a ReaxFF reactive force field for hydrogen combustion. J Phys Chem A. 2011;115:960–972. doi:10.1021/jp108325e
  • Schwab AW, Dykstra GJ, Selke E, et al. Diesel fuel from thermal decomposition of soybean oil. J Am Oil Chem Soc. 1988;65:1781–1786. doi:10.1007/BF02542382
  • Santos AGD, Caldeira VPS, Farias MF, et al. Characterization and kinetic study of sunflower oil and biodiesel. J Therm Anal Calorim. 2011;106:747–751. doi:10.1007/s10973-011-1838-5
  • Zhang Z, Yan K, Zhang J. ReaxFF molecular dynamics simulations of the initial pyrolysis mechanism of unsaturated triglyceride. J Mol Model. 2014;20:1–9. doi:10.1007/s00894-014-2127-6
  • Zheng H, Wang Z, Yang T, et al. Investigation on pyrolysis mechanism of palm olein and the effect of moisture on its pyrolysis. J Mol Liq. 2021;339:116824, doi:10.1016/j.molliq.2021.116824
  • Schwab AW, Dykstra GJ, Selke E, et al. Diesel fuel from thermal decomposition of soybean oil. J Am Oil Chem Soc. 1988;65:1781–1786. doi:10.1007/BF02542382
  • Liu X, Li X, Nie F, et al. Initial reaction mechanism of bio-oil high-temperature oxidation simulated with reactive force field molecular dynamics. Energy Fuels. 2017;31:1608–1619. doi:10.1021/acs.energyfuels.6b02508
  • Robota HJ, Alger JC, Shafer L. Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuels. 2013;27:985–996. doi:10.1021/ef301977b
  • Ratha S, Samantara AK, Singha KK, et al. Urea-assisted room temperature stabilized metastable β-NiMoO 4 : experimental and theoretical insights into its unique bifunctional activity toward oxygen evolution and supercapacitor. ACS Appl Mater Interfaces. 2017;9:9640–9653. doi:10.1021/acsami.6b16250
  • Asomaning J, Mussone P, Bressler DC. Thermal deoxygenation and pyrolysis of oleic acid. J Anal Appl Pyrolysis. 2014;105:1–7. doi:10.1016/j.jaap.2013.09.005
  • Maher KD, Kirkwood KM, Gray MR, et al. Pyrolytic decarboxylation and cracking of stearic acid. Ind Eng Chem Res. 2008;47:5328–5336. doi:10.1021/ie0714551
  • Lümmen N. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures. Phys Chem Chem Phys. 2010;12:7883–7893. doi:10.1039/c003367g
  • Zhang Z, Yan K, Zhang J. ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures. RSC Adv. 2013;3:6401–6407. doi:10.1039/c3ra22902e
  • Li K, Khanna R, Zhang H, et al. Thermal behaviour, kinetics and mechanisms of CO2 interactions with graphene: an atomic scale reactive molecular dynamic study. Chem Eng J. 2021;425:131529, doi:10.1016/j.cej.2021.131529
  • Li K, Zhang J, Liu Z, et al. Gasification of graphite and coke in carbon-carbon dioxide-sodium or potassium carbonate systems. Ind Eng Chem Res. 2014;53:5737–5748. doi:10.1021/ie4039955
  • Zheng H, Li X, Feng Y, et al. Investigation on micro-mechanism of palm oil as natural ester insulating oil for overheating thermal fault analysis of transformers. High Volt. 2022;7:812–824. doi:10.1049/hve2.12182
  • Tureček F. N-Cα bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? J Am Chem Soc. 2003;125:5954–5963. doi:10.1021/ja021323t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.