287
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insights into role of synergistic interplay among collagen type I, collagen type II, and water on the structure and nanomechanics of collagen fibrils in annulus fibrosus: a molecular dynamics study

&
Pages 274-286 | Received 05 Sep 2023, Accepted 25 Dec 2023, Published online: 09 Jan 2024

References

  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, et al. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 2005;3:125–140. doi:10.1007/s10237-004-0053-8
  • Scott JE, Haigh M. Proteoglycan-collagen interactions in intervertebral disc. A chondroitin sulphate proteoglycan associates with collagen fibrils in rabbit annulus fibrosus at the d-e bands. Biosci Rep. 1986;6:879–888. doi:10.1007/BF01116241
  • Stoeckelhuber M, Brueckner S, Spohr G, et al. Proteoglycans and collagen in the intervertebral disc of the rhesus monkey (Macaca mulatta). Ann Anat Anat Anz. 2005;187:35–42. doi:10.1016/J.AANAT.2004.08.007
  • Schollmeier G, Lahr-Eigen R, Lewandrowski KU. Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976). 2000;25:2736–2741.
  • Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Investig. 1996;98:996–1003. doi:10.1172/JCI118884
  • Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. Am J Roentgenol. 2007;189:936–942. doi:10.2214/AJR.07.2142
  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, et al. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Mod Mechanobiol. 2005;3:125–140. doi:10.1007/s10237-004-0053-8
  • O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine (Phila Pa 1976) 2007. doi:10.1097/BRS.0b013e31815b75fb
  • Vergari C, Mansfield J, Meakin JR, et al. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc. Acta Biomater. 2016;37; doi:10.1016/j.actbio.2016.04.002
  • Tavakoli J, Costi JJ. Ultrastructural organization of elastic fibres in the partition boundaries of the annulus fibrosus within the intervertebral disc. Acta Biomater. 2018;68:67–77. doi:10.1016/j.actbio.2017.12.017
  • Scott JE, Haigh M. Proteoglycan-collagen interactions in intervertebral disc. A chondroitin sulphate proteoglycan associates with collagen fibrils in rabbit annulus fibrosus at the d-e bands. Biosci Rep. 1986;6:879–888. doi:10.1007/BF01116241
  • Stoeckelhuber M, Brueckner S, Spohr G, et al. Proteoglycans and collagen in the intervertebral disc of the rhesus monkey (Macaca mulatta). Ann Anatom – Anat Anzeig. 2005;187:35–42. doi:10.1016/J.AANAT.2004.08.007
  • Fratzl P. Collagen: structure and mechanics. 2008. https://doi.org/10.1007/978-0-387-73906-9.
  • Gautieri A, Pate MI, Vesentini S, et al. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. J Biomech. 2012;45:2079–2083. doi:10.1016/j.jbiomech.2012.05.047
  • Zhang D, Chippada U, Jordan K. Effect of the structural water on the mechanical properties of collagen-like microfibrils: a molecular dynamics study. Ann Biomed Eng. 2007;35:1216–1230. doi:10.1007/s10439-007-9296-8
  • Gautieri A, Vesentini S, Redaelli A, et al. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11:757–766. doi:10.1021/nl103943u
  • Bhattacharya S, Dubey DK. Radial variations in mechanical behaviour and fibrillar structure in annulus fibrosus has foundations at molecular length-scale: insights from molecular dynamics simulations of type I and type II collagen molecules. J Mater Res. 2021;36:3407–3425. doi:10.1557/S43578-021-00376-2
  • Bhattacharya S, Dubey DK. Impact of variations in water concentration on the nanomechanical behavior of type I collagen microfibrils in annulus fibrosus. J Biomech Eng. 2022;144:041004. doi:10.1115/1.4052563
  • Gautieri A, Pate MI, Vesentini S, et al. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. J Biomech. 2012;45:2079–2083. doi:10.1016/j.jbiomech.2012.05.047
  • Inoue H, Takeda T. Three-dimensional observation of collagen framework of lumbar intervertebral discs. Acta Orthop. 1975;46:949–956. doi:10.3109/17453677508989283
  • Schollmeier G, Lahr-Eigen R, Lewandrowski KU. Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976). 2000;25:2736–2741. doi:10.1097/00007632-200011010-00004
  • Eyre DR, Muir H. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. BBA – Protein Struct. 1977. doi:10.1016/0005-2795(77)90211-2
  • Makarov V, Pettitt BM, Feig M. Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment. Acc Chem Res. 2002;35:376–384. doi:10.1021/ar0100273
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi:10.1006/jcph.1995.1039
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30:1545–1614. doi:10.1002/JCC.21287
  • Park S, Radmer RJ, Klein TE, et al. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen-like peptides. J Comput Chem. 2005;26; doi:10.1002/jcc.20301
  • Florová P, Sklenovský P, Banáš P, et al. Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. J Chem Theory Comput. 2010;6:3569–3579. doi:10.1021/ct1003687
  • Madhavi WAM, Weerasinghe S, Fullerton GD, et al. Structure and dynamics of collagen hydration water from molecular dynamics simulations: implications of temperature and pressure. J Phys Chem B. 2019;123:4901–4914. doi:10.1021/ACS.JPCB.9B03078/ASSET/IMAGES/LARGE/JP-2019-03078N_0003.JPEG
  • Tourell MC, Momot KI. Molecular dynamics of a hydrated collagen peptide: insights into rotational motion and residence times of single-water bridges in collagen. J Phys Chem B. 2016;120:12432–12443. doi:10.1021/ACS.JPCB.6B08499/ASSET/IMAGES/LARGE/JP-2016-084997_0008.JPEG
  • Karjalainen J, Henschel H, Nissi MJ, et al. Dipolar relaxation of water protons in the vicinity of a collagen-like peptide. J Phys Chem B. 2022;126:2538–2551. doi:10.1021/ACS.JPCB.2C00052/ASSET/IMAGES/MEDIUM/JP2C00052_M027.GIF
  • Harley R, James D, Miller A, et al. Phonons and the elastic moduli of collagen and muscle [38]. Nature. 1977;267:285–287. doi:10.1038/267285a0
  • Cusack S, Miller A. Determination of the elastic constants of collagen by Brillouin light scattering. J Mol Biol. 1979;135:39–51. doi:10.1016/0022-2836(79)90339-5
  • Hofmann H, Voss T, Kühn K, et al. Localization of flexible sites in thread-like molecules from electron micrographs. Comparison of interstitial, basement membrane and intima collagens. J Mol Biol. 1984;172:325–343. doi:10.1016/S0022-2836(84)80029-7
  • Lorenzo AC, Caffarena ER. Elastic properties, Young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. J Biomech. 2005;38:1527–1533. doi:10.1016/j.jbiomech.2004.07.011
  • Buehler MJ. Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. J Mater Res. 2006;21:1947–1961. doi:10.1557/jmr.2006.0236
  • Tang H, Buehler MJ, Moran B. A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. Ann Biomed Eng. 2009;37:1117–1130. doi:10.1007/s10439-009-9679-0
  • Vesentini S, Fitié CFC, Montevecchi FM, et al. Molecular assessment of the elastic properties of collagen-like homotrimer sequences. Biomech Modl Mechanobiol. 2005;3:224–234. doi:10.1007/s10237-004-0064-5
  • Dubey DK, Tomar V. Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials. Acta Biomater. 2009;5:2704–2716. doi:10.1016/j.actbio.2009.02.035
  • Svensson RB, Mulder H, Kovanen V, et al. Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J. 2013;104:2476–2484. doi:10.1016/j.bpj.2013.04.033
  • Van Der Rijt JAJ, Van Der Werf KO, Bennink ML, et al. Micromechanical testing of individual collagen fibrils. Macromol Biosci. 2006;6:699–702. doi:10.1002/mabi.200600063
  • Shen ZL, Dodge MR, Kahn H, et al. Stress-strain experiments on individual collagen fibrils. Biophys J. 2008;95:3956–3963. doi:10.1529/biophysj.107.124602
  • Eppell SJ, Smith BN, Kahn H, et al. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface. 2006;3:117–121. doi:10.1098/rsif.2005.0100
  • Gautieri A, Vesentini S, Redaelli A, et al. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11:757–766. doi:10.1021/nl103943u
  • Black SD, Mould DR. Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal Biochem. 1991;193:72–82. doi:10.1016/0003-2697(91)90045-U
  • Antipova O, Orgel JPRO. In situ D-periodic molecular structure of type II collagen. J Biol Chem. 2010;285:7087–7096. doi:10.1074/JBC.M109.060400
  • Orgel JP, Wess TJ, Miller A. The in situ conformation and axial location of the intermolecular cross- linked non-helical telopeptides of type I collagen. Structure. 2000;8:137–142. doi:10.1016/S0969-2126(00)00089-7
  • Orgel JPRO, Irving TC, Miller A, et al. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A. 2006;103:9001–9005. doi:10.1073/pnas.0502718103
  • Grynpas MD, Eyre DR, Kirschner DA. Collagen type II differs from type I in native molecular packing. BBA - Protein Struct. 1980;626:346–355. doi:10.1016/0005-2795(80)90129-4
  • Liu L, Huang K, Li W, et al. Molecular imaging of collagen destruction of the spine. ACS Nano. 2021;15; doi:10.1021/acsnano.1c07112
  • Hansen P, Haraldsson BT, Aagaard P, et al. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology. J Appl Physiol. 2010;108:47–52. doi:10.1152/JAPPLPHYSIOL.00944.2009/ASSET/IMAGES/LARGE/ZDG0011088710006.JPEG
  • Svensson RB, Mulder H, Kovanen V, et al. Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J. 2013;104:2476–2484. doi:10.1016/j.bpj.2013.04.033
  • Depalle B, Duarte AG, Fiedler IAK, et al. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone. 2018;110:107–114. doi:10.1016/J.BONE.2018.01.024
  • Arakawa S, Suzuki R, Kurosaka D, et al. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Scient Report. 2020;10(1):1–12. doi:10.1038/s41598-020-75923-8
  • Zhou M, Archibeck ES, Feteih Y, et al. Non-enzymatic glycation increases the failure risk of annulus fibrosus by predisposing the extrafibrillar matrix to greater stresses. Acta Biomater. 2023;168:223–234. doi:10.1016/J.ACTBIO.2023.07.003
  • Depalle B, Qin Z, Shefelbine SJ, et al. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13. doi:10.1016/j.jmbbm.2014.07.008
  • Kamml J, Ke CY, Acevedo C, et al. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater. 2023;143:105870. doi:10.1016/J.JMBBM.2023.105870
  • Bhattacharya S, Dubey DK. A multiscale investigation into the role of collagen-hyaluronan interface shear on the mechanical behaviour of collagen fibers in annulus fibrosus – molecular dynamics-cohesive finite element-based study. J Mech Behav Biomed Mater. 2023;106147; doi:10.1016/J.JMBBM.2023.106147
  • Bruehlmann SB, Matyas JR, Duncan NA. ISSLS prize winner: collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine (Phila Pa 1976). 2004;29:2612–2620. doi:10.1097/01.brs.0000146465.05972.56
  • Hamilton KD, Chrzan AJ, Michalek AJ. Reflected cross-polarized light microscopy as a method for measuring collagen fiber crimp in musculoskeletal tissues. J Mech Behav Biomed Mater. 2022;125:104953. doi:10.1016/J.JMBBM.2021.104953
  • Bruehlmann SB, Matyas JR, Duncan NA. ISSLS prize winner: collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine (Phila Pa 1976). 2004;29:2612–2620. doi:10.1097/01.brs.0000146465.05972.56
  • Vergari C, Mansfield J, Meakin JR, et al. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc. Acta Biomater. 2016;37:14–20. doi:10.1016/j.actbio.2016.04.002
  • Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec. 1988;220:337–356. doi:10.1002/AR.1092200402
  • Heuer F, Schmidt H, Wilke HJ. The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading. J Biomech. 2008;41; doi:10.1016/j.jbiomech.2007.11.019
  • Noailly J, Planell JA, Lacroix D. On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomech Model Mechanobiol. 2011;10; doi:10.1007/s10237-010-0227-5
  • Iatridis JC, MacLean JJ, O’Brien M, et al. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine (Phila Pa 1976). 2007;32:1493–1497. doi:10.1097/BRS.0b013e318067dd3f
  • Han WM, Nerurkar NL, Smith LJ, et al. Multi-scale structural and tensile mechanical response of annulus fibrosus to osmotic loading. Ann Biomed Eng. 2012;40:1610–1621. doi:10.1007/s10439-012-0525-4
  • Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976). 1990;15:402–410. doi:10.1097/00007632-199005000-00011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.