78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Forecasting optical response in lieu of electronic properties of TlCaF3 via halogen substitution for UV filtration: a DFT perspective

, , , & ORCID Icon
Pages 729-742 | Received 11 Jan 2024, Accepted 29 Apr 2024, Published online: 16 May 2024

References

  • Nadeem J, Kiran Z, Zeba I, et al. A detailed computational study to investigate the influence of metals (Bi, Sn, Tl) substitution on phase transition, electronic band structure and their implications on optical, elastic, anisotropic and mechanical properties of PbHfO3. Opt Quantum Electron. 2023;55(1):45. doi: 10.1007/s11082-022-04305-3
  • Nishimatsu T, Terakubo N, Mizuseki H, et al. Band structures of perovskite-like fluorides for vacuum-ultraviolet-transparent lens materials. Jpn J Appl Phys. 2002;41(4A):L365. doi: 10.1143/JJAP.41.L365
  • Hoshina T. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds. J Phys Soc Jpn. 1980;48(4):1261–1268. doi: 10.1143/JPSJ.48.1261
  • Dotzler C, Williams GVM, Edgar A. RbCdF3: Mn2+: a potential ultraviolet dosimeter material. Appl Phys Lett. 2007;91(18):36–39. doi: 10.1063/1.2805072
  • Khan S, Zaman SU, Ahmad R, et al. Ab initio investigations of structural, elastic, electronic and optical properties of the fluoroperovskite TIXF3 (X = Ca, Cd, Hg, and Mg) compounds. Mater Res Express. 2019;6(12):125923. doi: 10.1088/2053-1591/ab5e37
  • Vaitheeswaran G, Kanchana V, Kumar RS, et al. High-pressure structural, elastic, and electronic properties of the scintillator host material KMgF3. Phys Rev B. 2007;76(1):014107. doi: 10.1103/PhysRevB.76.014107
  • Korba SA, Meradji H, Ghemid S, et al. First principles calculations of structural, electronic and optical properties of BaLiF3. Comput Mater Sci. 2009;44(4):1265–1271. doi: 10.1016/j.commatsci.2008.08.012
  • Furetta C, Santopietro F, Sanipoli C, et al. Thermoluminescent (TL) properties of the perovskite KMgF3 activated by Ce and Er impurities. Appl Radiat Isot. 2001;55(4):533–542. doi: 10.1016/S0969-8043(01)00085-9
  • Selmani Y, Labrim H, Ziti S, et al. Electronic, optical and thermoelectric properties of the CsMF3 (M=Si or Ge) fluoro-perovskites. Comput Condens Matter. 2022;32:e00699. doi: 10.1016/j.cocom.2022.e00699
  • Erum N, Iqbal MA. Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications. Mater Res Express. 2018;5(2):025904. doi: 10.1088/2053-1591/aaad5c
  • Mubarak AA. Ab initio study of the structural, electronic and optical properties of the fluoropervskite SrXF3 (X=Li, Na, K and Rb) compounds. Comput Mater Sci. 2014;81:478–482. doi: 10.1016/j.commatsci.2013.08.055
  • Arora G, Sharma M. Study of KCaF3 and CsCaF3 using hybrids density functionals. Mater Today Proc. 2020;29:267–274. doi: 10.1016/j.matpr.2020.07.272
  • Murtaza G, Sadique G, Aliabad HR, et al. First principles study of cubic perovskites: AgTF3 (T=Mg, Zn). Phys B Condens Matter. 2011;406(24):4584–4589. doi: 10.1016/j.physb.2011.09.026
  • Khan I, Shehzad N, Ahmad I, et al. First-principle studies of the optoelectronic properties of ASnF3 (A = Na, K, Rb and Cs). Int J Mod Phys B. 2017;31(21):1750148. doi: 10.1142/S021797921750148X
  • Bouhmaidi S, Pingak RK, Azouaoui A, et al. Ab initio study of structural, elastic, electronic, optical and thermoelectric properties of cubic Ge-based fluoroperovskites AGeF3 (A=K, Rb and Fr). Solid State Commun. 2023;369:115206. doi: 10.1016/j.ssc.2023.115206
  • Pingak RK, Bouhmaidi S, Setti L, et al. Structural, electronic, elastic, and optical properties of cubic BaLiX 3 (X=F, Cl, Br, or I) perovskites: an ab-initio DFT study. Indones J Chem. 2023;23(3):843–862. doi: 10.22146/ijc.83261.
  • Pingak RK. A DFT study of structural and electronic properties of cubic thallium based fluoroperovskites TlBF3 (BGe, Sn, Pb, Zn, Cd, Hg, Mg, Ca, Sr, Ba). Comput Condens Matter. 2022;33:e00747. doi: 10.1016/j.cocom.2022.e00747ee
  • Sohail M, Husain M, Rahman N, et al. First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3(L=Ca, Cd) compounds for optoelectronic applications. RSC Adv. 2022;12(12):7002–7008. doi: 10.1039/D2RA00464J
  • Cheriet A, Lagoun B, Halit M, et al. First-principles study of structural, electronic, optical and elastic properties of cadmium based fluoro-perovskite MCdF3 (M=Rb, Tl). Solid State Phenom. 2019;297:173–186. doi: 10.4028/www.scientific.net/SSP.297.173
  • Ilyas I, Zafar AA, Ullah HMN, et al. Pressure-induced elastic, mechanical and opto-electronic response of RbCdF3: a comprehensive computational approach. J Phys Chem Solids. 2022;165:110642. doi: 10.1016/j.jpcs.2022.110642
  • Gillani SSA, Fatima N, Zeba I, et al. Static isotropic pressure induced ultra-wide band gap response of NaCaF3 fluoro-perovskite and its repercussions on optical properties: ab initio calculation. Mol Simul. 2021;47(18):1549–1557. doi: 10.1080/08927022.2021.1992406
  • Rizwan M, Zeba I, Shakil M, et al. Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): insight from DFT calculation. Optik (Stuttg). 2020;211:164611. doi: 10.1016/j.ijleo.2020.164611
  • Rizwan M, Usman Z, Shakil M, et al. Electronic and optical behaviour of lanthanum doped CaTiO3 perovskite. Mater Res Express. 2020;7(1):015920. doi: 10.1088/2053-1591/ab6802
  • Khattak SA, Abohashrh M, Ahmad I, et al. Investigation of structural, mechanical, optoelectronic, and thermoelectric properties of BaXF3 (X=Co, Ir) fluoro-perovskites: promising materials for optoelectronic and thermoelectric applications. ACS Omega. 2023;8(6):5274–5284. doi: 10.1021/acsomega.2c05845
  • Tahir FT, Husain M, Sfina N, et al. Probing the physical properties for prospective high energy applications of QMnF 3 (Q=Ga, In) halide perovskites compounds employing the framework of density functional theory. RSC Adv. 2023;13(27):18788–18798. doi: 10.1039/D3RA02878J
  • Jiao Y, Yi S, Wang H, et al. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv Funct Mater. 2021;31(4):2006243. doi: 10.1002/adfm.202006243
  • Gillani SSA, Awais M, Atif M, et al. Computational investigation to explore the effects of metals (Mg, Ca, Sr) doping on phase transition, electronic band structure and their repercussions on optical, elastic and mechanical properties of BaThO3. Phys Scr. 2023;98(1):015814. doi: 10.1088/1402-4896/aca6af
  • Gillani SSA, Ali MN, Hussain T, et al. Cubic to tetragonal structural phase transformation in NaNbO3 with peculiar Mg and Ca doping and its repercussions on optoelectronic properties. Optik (Stuttg). 2021;247:168017. doi: 10.1016/j.ijleo.2021.168017
  • Rafique MD, Awais M, Gulzar F, et al. First principles computation of insulator–semiconductor–metal transition and its impact on structural, elastic, mechanical, anisotropic and optical properties of CsSrF3 under systematic static isotropic pressure. Mol Simul. 2023;49(5):453–471. doi: 10.1080/08927022.2023.2165127
  • Pingak RK, Johannes AZ, Hauwali NUJ, et al. Lead-free perovskites TlGeClxBr3-x (x = 0, 1, 2, 3) as promising materials for solar cell application: a DFT study. J Phys Conf Ser. 2023, November;2623(1):012002.
  • Pingak RK, Harbi A, Moutaabbid M, et al. Lead-free perovskites InSnX3 (X=Cl, Br, I) for solar cell applications: a DFT study on the mechanical, optoelectronic, and thermoelectric properties. Mater Res Express. 2023;10(9):095507. doi: 10.1088/2053-1591/acf984
  • Pingak RK, Bouhmaidi S, Harbi A, et al. A DFT investigation of lead-free TlSnX 3 (X=Cl, Br, or I) perovskites for potential applications in solar cells and thermoelectric devices. RSC Adv. 2023;13(48):33875–33886. doi: 10.1039/D3RA06685A
  • Yakobson GG, Akhmetova NE. Alkali metal fluorides in organic synthesis. Synthesis. 1983;03:169–184.
  • Arif M, Reshak AH, Zaman SU, et al. Density functional theory based study of the physical properties of cesium based cubic halide perovskites CsHgX3 (X═ F and Cl). Int J Energy Res. 2022;46(3):2467–2476. doi: 10.1002/er.7321
  • Jehan A, Husain M, Sfina N, et al. First-principles calculations to investigate structural, elastic, electronic, and optical properties of XSrCl3 (X=Li, Na). Optik. 2023;287:171088. doi: 10.1016/j.ijleo.2023.171088
  • Du XP, Wang YX, Lo VC. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations. Phys Lett A. 2010;374(25):2569–2574. doi: 10.1016/j.physleta.2010.04.020
  • Guechi N, Bouhemadou A, Khenata R, et al. Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2. Solid State Sci. 2014;29:12–23. doi: 10.1016/j.solidstatesciences.2014.01.001
  • Rahman N, Husain M, Yang J, et al. First principle study of structural, electronic, optical and mechanical properties of cubic fluoro-perovskites:(CdXF3, X=Y, Bi). Eur Phys J Plus. 2021;136(3):1–11.
  • Vaitheeswaran G, Kanchana V, Kumar RS, et al. High-pressure structural study of fluoro-perovskite CsCdF 3 up to 60 GPa: a combined experimental and theoretical study. Phys Rev B. 2010;81(7):075105. doi: 10.1103/PhysRevB.81.075105
  • Voigt W. Lehrbuch der Kristallphysik. Leipzig: Taubner Advances in Earth Science 01; 1928.
  • Reuß A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mech/Z Angew Math Mech. 1929;9(1):49–58. doi: 10.1002/zamm.19290090104
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A. 1952;65(5):349. doi: 10.1088/0370-1298/65/5/307
  • Dong H, Chen C, Wang S, et al. Elastic properties of tetragonal BiFeO3 from first-principles calculations. Appl Phys Lett. 2013;102(18). doi: 10.1063/1.4804641
  • Hossain MM, Ali MA, Uddin MM, et al. Origin of high hardness and optoelectronic and thermo-physical properties of boron-rich compounds B6X (X = S, Se): a comprehensive study via DFT approach. J Appl Phys. 2021;129(17):175109. doi: 10.1063/5.0047139
  • Husain M, Rahman N, Khan R, et al. Structural, electronic, elastic, and magnetic properties of NaQF3 (Q=ag, Pb, Rh, and Ru) flouroperovskites: a first-principle outcomes. Int J Energy Res. 2022;46(3):2446–2453. doi: 10.1002/er.7319
  • Ravindran P, Fast L, Korzhavyi PA, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys. 1998;84(9):4891–4904. doi: 10.1063/1.368733
  • Tariq S, Ahmed A, Saad S, et al. Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study. AIP Adv. 2015;5(7):077111. doi: 10.1063/1.4926437
  • Pettifor DG, Aoki M. Bonding and structure of intermetallics: a new bond order potential. Philos Trans R Soc London Ser A Phys Eng Sci. 1991;334(1635):439–449.
  • Rahman MA, Rahaman MZ, Rahman MA. The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study. Int J Modern Phys B. 2016;30(27):1650199. doi: 10.1142/S021797921650199X
  • Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8(4):345–349. doi: 10.1179/mst.1992.8.4.345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.