40
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Decoding the commutable first hyperpolarisability of keto–enol tautomer using DFT and AI-based soft computing method

, , , , &
Pages 789-805 | Received 13 Dec 2023, Accepted 08 May 2024, Published online: 25 May 2024

References

  • Heyuan Z, Tao W, Wanguo Z, et al. Efficient second harmonic generation of femtosecond laser at 1 μm. Opt Express. 2004;12:2150–2155. doi:10.1364/OPEX.12.002150
  • Jérémy B, Pierre-François B, Olivier JFM. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano. 2015;9(11):10545–10562. doi:10.1021/acsnano.5b04373
  • Konstantinos I, Oksana K, Denis G, et al. Reversible two-photon optical data storage in coumarin-based copolymers. J Am Chem Soc. 2010;132(41):14343–14345. doi:10.1021/ja1047285
  • Champagne B, Plaquet A, Pozzo LJ, et al. Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc. 2012;134:8101–8103. doi:10.1021/ja302395f
  • Serra-Crespo P, van der Veen AM, Gobechiya E, et al. NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. J Am Chem Soc. 2012;134:8314–8317. doi:10.1021/ja300655f
  • Sanguinet L, Pozzo LJ, Rodriguez V, et al. Acido- and phototriggered NLO properties enhancement. J Phys Chem B. 2005;109:11139–11150. doi:10.1021/jp0442450
  • Saeed MR, Janjua A. Photovoltaic properties and enhancement in near-infrared light absorption capabilities of acceptor materials for organic solar cell applications: a quantum chemical perspective via DFT. J Phys Chem Solids. 2022;171:110996. doi:10.1016/j.jpcs.2022.110996
  • Mehboob MY, Hussain R, Adnan M, et al. Theoretical modelling of novel indandione-based donor molecules for organic solar cell applications. J Phys Chem Solids. 2022;162:110508. doi:10.1016/j.jpcs.2021.110508
  • Maity R, Mandal D, Misra A. Effect of donor acceptor substitution position on the electrical responsive properties of azulene system: a computational study. Mol Phys. 2019;117(14):1781–1789. doi:10.1080/00268976.2018.1543902
  • Boubekeur-Lecaque L, Coe JB, Clays K, et al. Redox-switching of nonlinear optical behavior in Langmuir−Blodgett thin films containing a ruthenium(II) ammine complex. J Am Chem Soc. 2008;130:3286–3287. doi:10.1021/ja711170q
  • Manc F, Pozzo LJ, Pan J, et al. Two-way molecular switches with large nonlinear optical contrast. Chem Eur J. 2009;15:2560–2571.
  • Mandal U, Samanta SS, Beg H, et al. Investigation of first hyper-polarisability molecular switches between enol–keto equilibrium of phenyl benzodifurantrione: a DFT-based computational study. Mol Phys. 2023;121(3):e2161964. doi:10.1080/00268976.2022.2161964
  • Maity R, Mandal D, Mandal U, et al. Computation of global reactivity descriptors along the proton transfer co-ordinate of 9-hydroxyphenalen-1-one and 6-hydroxy-benzo[de]anthracen-7-one: a DFT-based comparative study. Mol Phys. 2022;120(9):e2047236. doi:10.1080/00268976.2022.2047236
  • Janjua A. Nonlinear optical response of a series of small molecules: quantum modification of π-spacer and acceptor. J Iran Chem Soc. 2017;14:2041–2054. doi:10.1007/s13738-017-1141-x
  • Janjua A, Irfan A, Hussien M, et al. Machine-learning analysis of small-molecule donors for fullerene based organic solar cells. Energy Technol. 2022;10:2200019. doi:10.1002/ente.202200019
  • Janjua A, Mahmood A, Ahmad F. Solvent effects on nonlinear optical response of certain tetrammineruthenium(II) complexes of modified 1,10-phenanthrolines. Can J Chem. 2013;91:1303–1309. doi:10.1139/cjc-2013-0377
  • Janjua MRSA. Quantum chemical design of D–π–A-type donor materials for highly efficient, photostable, and vacuum- processed organic solar cells. Energy Technol. 2021;9:2100489. doi:10.1002/ente.202100489
  • Janjua MRSA, Guan W, Yan L, et al. Quantum chemical design for enhanced second-order NLO response of terpyridine-substituted hexamolybdates. Eur J Inorg Chem. 2010;2010:3466–3472. doi:10.1002/ejic.201000428
  • Janjua MRSA, Guan W, Yan L, et al. Prediction of robustly large molecular second-order nonlinear optical properties of terpyridine-substituted hexamolybdates: structural modelling towards a rational entry to NLO materials. J Mol Graph Model. 2010;28:735–745. doi:10.1016/j.jmgm.2010.01.011
  • Janjua MRSA, Su ZM, Guan W, et al. Tuning second-order non-linear (NLO) optical response of organoimido-substituted hexamolybdates through halogens: quantum design of novel organic–inorganic hybrid NLO materials. Aust J Chem. 2010;63:836–844. doi:10.1071/CH10094
  • Sliwa M, Létard S, Malfant I, et al. Synthesis, structural and nonlinear optical properties of photochromic crystals. Toward reversible molecular switches. Chem Mater. 2005;17:4727–4735.
  • Bogdan E, Plaquet A, Antonov L, et al. Solvent effects on the second-order nonlinear optical responses in the keto−enol equilibrium of a 2-hydroxy-1-naphthaldehyde derivative. J Phys Chem C. 2010;114:12760–12768. doi:10.1021/jp103556c
  • Fabian FMW, Antonov L, Nedeltcheva D, et al. Tautomerism in hydroxynaphthaldehyde anils and Azo analogues:  a combined experimental and computational study. J Phys Chem A. 2004;108:7603–7612. doi:10.1021/jp048035z
  • Sliwa M, Nakatani K, Asahi T, et al. Polarization and wavelength dependent nonlinear optical properties of a photo-switchable organic crystal. Chem Phys Lett. 2007;437:212–217. doi:10.1016/j.cplett.2007.02.001
  • Guillaume M, Champagne B, Markova N, et al. Ab initio investigation on the second-order nonlinear optical responses in keto−enol equilibria of salicylideneanilines. J Phys Chem A. 2007;111:9914–9923. doi:10.1021/jp074567e
  • Plaquet A, Guillaume M, Champagne B, et al. Investigation on the second-order nonlinear optical responses in the keto−enol equilibrium of anil derivatives. J Phys Chem C. 2008;112:5638–5645. doi:10.1021/jp711511t
  • Sliwa M, Mouton N, Ruckebusch C, et al. Investigation of ultrafast photoinduced processes for salicylidene aniline in solution and gas phase: toward a general photo-dynamical scheme. Photochem Photobiol Sci. 2010;9:661–669. doi:10.1039/b9pp00207c
  • ZiółEk M, Kubicki J, Maciejewski A, et al. Enol-keto tautomerism of aromatic photochromic Schiff base N,N′N,N′-bis(salicylidene)-pp-phenylenediamine: ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale. J Chem Phys. 2006;124:124518.
  • Zadeh LA. Outline of a New approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern. 1973;3:28–44. doi:10.1109/TSMC.1973.5408575
  • Mater AC, Coote ML. Deep learning in chemistry. J Chem Inf Model. 2019;59:2545–2559. doi:10.1021/acs.jcim.9b00266
  • Szaciłowski K. Digital information processing in molecular systems. Chem Rev. 2008;108:3481–3548. doi:10.1021/cr068403q
  • Gentili PL. Boolean and fuzzy logic gates based on the interaction of flindersine with bovine serum albumin and tryptophan. J Phys Chem A. 2008;112:11992–11997. doi:10.1021/jp806772m
  • Gentili PL, Giubila MS, Heron BM. Processing binary and fuzzy logic by chaotic time series generated by a hydrodynamic photochemical oscillator. Chem Phys Chem. 2017;18:1831–1841. doi:10.1002/cphc.201601443
  • Irfan A, Hussien M, Mehboob MY, et al. Learning from fullerenes and predicting for Y6: machine learning and high-throughput screening of small molecule donors for organic solar cells. Energy Technol. 2022;10:2101096. doi:10.1002/ente.202101096
  • Mahmood A, Wang JL. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A. 2021;9:15684. doi:10.1039/D1TA04742F
  • Mahmood A, Irfan A, Wang JL. Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A. 2022;10:4170. doi:10.1039/D1TA09762H
  • Sahoo A, Ahmed T, Deb S, et al. Neuro-fuzzification architecture for modeling of electrochemical Ion-sensing data of imidazole-dicarboxylate-based Ru(II)–bipyridine complex. Inorg Chem. 2022;61:10242–10254. doi:10.1021/acs.inorgchem.2c01715
  • İnal M. Predicting the conversion ratio for the leaching of celestite in sodium carbonate solution using an adaptive neuro-fuzzy inference system. Ind Eng Chem Res. 2014;53:4975–4980. doi:10.1021/ie500225a
  • Mukherjee S, Sahoo A, Deb S, et al. Light and cation-driven optical switch based on a stilbene-appended terpyridine system for the design of molecular-scale logic devices. J Phys Chem A. 2021;125:8261–8273. doi:10.1021/acs.jpca.1c06524
  • Goldsworthy V, LaForce G, Abels S, et al. Fluorogenic RNA aptamers: a nano-platform for fabrication of simple and combinatorial logic gates. Nanomaterials. 2018;8:984. doi:10.3390/nano8120984
  • Mardanya S, Mondal D, Karmakar S, et al. Smart ruthenium and osmium complexes mimic the complicated functions of traffic signal and memory device. Sens Actuat B. 2017;239:635–641. doi:10.1016/j.snb.2016.08.047
  • Magri DC, Spiteri JC. Proof of principle of a three-input AND–INHIBIT–OR combinatorial logic gate array. Org Biomol Chem. 2017;15:6706–6709. doi:10.1039/C7OB01223C
  • Gentili PL, Stano P. Tracing a new path in the field of AI and robotics: mimicking human intelligence through chemistry. Part I: molecular and supramolecular chemistry. Front Robot AI. 2023;10:1238492. doi:10.3389/frobt.2023.1238492
  • Gentili PL, Stano P. Tracing a new path in the field of AI and robotics: mimicking human intelligence through chemistry. part II: systems chemistry. Front Robot AI. 2023;10:1266011. doi:10.3389/frobt.2023.1266011
  • Baum ZJ, Yu X, Ayala PY, et al. Artificial intelligence in chemistry: current trends and future directions. J Chem Inf Model. 2021;61(7):3197–3212. doi:10.1021/acs.jcim.1c00619
  • Bersohn R, Pao HY, Frisch LH. Double-quantum light scattering by molecules. J Chem Phys. 1966;45:3184. doi:10.1063/1.1728092
  • Kleinman D. Nonlinear dielectric polarization in optical media. Phys Rev A 1962;126:1977. doi:10.1103/PhysRev.126.1977
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, revision B.01. Wallingford, CT: Gaussian Inc.; 2016; GaussView 5.0. Wallingford, E.U.A.
  • Murugan NA, Rinkevicius Z, Agren H. Solvent dependence on bond length alternation and charge distribution in phenol blue: a Car-Parrinello molecular dynamics investigation. J Phys Chem A. 2009;113:4833–4839. doi:10.1021/jp900190b
  • Jarwal N, Thankachan PP. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide. J Mol Model. 2015;21:87. doi:10.1007/s00894-015-2571-y
  • Jorgensen LW. Special issue on polarization. J Chem Theory Comput. 2007;3:1877. doi:10.1021/ct700252g
  • Dahlke EE, Truhlar GD. Electrostatically embedded many-body expansion for large systems, with applications to water clusters. J Chem Theory Comput. 2007;3:46–53. doi:10.1021/ct600253j
  • Bishop MD. Effect of the surroundings on atomic and molecular properties. Int Rev Phys Chem. 1994;13(1):21–39. doi:10.1080/01442359409353289
  • Castet F, Bogdan E, Plaquet A, et al. Reference molecules for nonlinear optics: a joint experimental and theoretical investigation. J Chem Phys. 2012;136:024506. doi:10.1063/1.3675848
  • Haroon M, Janjua MRSA. Exploring the efect of end–capped modifcations of carbazole–based fullerene–free acceptor molecules for high–performance indoor organic solar cell applications. J Comput Electron. 2022;21:40–51. doi:10.1007/s10825-021-01838-w
  • Mahmood R, Janjua MRSA, Jamil S. Dft molecular simulation for design and effect of core bridging acceptors (BA) on NLO response: first theoretical framework to enhance nonlinearity through BA. J Clust Sci. 2017;28:3175–3183. doi:10.1007/s10876-017-1287-9
  • Janjua MRSA. First theoretical framework of di-substituted donor moieties of triphenylamine and carbazole for NLO properties: quantum paradigms of interactive molecular computation. Mol Simul. 2017;43(18):1539–1545. doi:10.1080/08927022.2017.1332413
  • Guan W, Liu CG, Song P, et al. Quantum chemical study of redox-switchable second-order optical nonlinearity in Keggin-type organoimido derivative [PW11O39(ReNC6H5)]n− (n = 2–4). Theor Chem Account. 2009;122:265–273. doi:10.1007/s00214-009-0505-4
  • Oudar LJ, Chemla SD. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys. 1977;66:2664–2668. doi:10.1063/1.434213
  • Zhang X, Wu QH, Xu LH, et al. Modulating the charge transfer of D–S–A molecules: structures and NLO properties. J Phys Chem A. 2015;119:767–773. doi:10.1021/jp5103127
  • Mandal D, Maity R, Mandal U, et al. Computation of electrical responsive properties and global reactivity descriptors along the proton transfer co-ordinate of donor–acceptor substituted pyrazole derivatives. Mol Phys. 2021;119(3):e1811413. doi:10.1080/00268976.2020.1811413
  • Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Machine Stud. 1975;7:1–13. doi:10.1016/S0020-7373(75)80002-2
  • MSG N, Selvaraju N. Prediction of liquid-liquid flow patterns in a Y-junction circular microchannel using advanced neural network techniques. Ind Eng Chem Res. 2016;55:11346–11362. doi:10.1021/acs.iecr.6b02438
  • MATLAB. The MathWorks. Natick (MA): Inc.; 2018.
  • Jang JSR, Sun CT. Neuro-fuzzy modeling and control. Proc. IEEE. 1995;83:378–406. doi:10.1109/5.364486
  • Sugeno M, Yasukhiro T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst. 1993;1:7–31. doi:10.1109/TFUZZ.1993.390281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.