27
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dissipative particle dynamics simulation of proposed artificial filament contraction mechanism using variable external force inspired by nature

Pages 806-819 | Received 20 Dec 2023, Accepted 10 May 2024, Published online: 28 May 2024

References

  • Tolley MT, Shepherd R, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robot. 2014;1:213–223. doi:10.1089/soro.2014.0008
  • Spiers A, Khan SG, Herrmann G. Biologically inspired control of humanoid robot arms: robust and adaptive approaches. 1st ed. Berlin: Springer; 2016.
  • Hall JE. Guyton and Hall textbook of medical physiology (guyton physiology). 13th ed. Philadelphia (PA): Saunders; 2015.
  • Mitsui T, Ohshima H. Theory of muscle contraction mechanism with -cooperative interaction among crossbridges. Biophysics. 2012;8:27–39. doi:10.2142/biophysics.8.27
  • Huang HW, Uslu FE, Katsamba p, et al. Adaptive locomotion of artificial microswimmers. Sci Adv. 2019;5:eaau1532. doi:10.1126/sciadv.aau1532
  • Alapan Y, Bozuyuk U, Erkoc P, et al. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci Robot. 2020;5:eaba5726.
  • Kim Y, Parada GA, Liu S, et al. Ferromagnetic soft continuum robots. Sci Robot. 2019;4:eaax7329. doi:10.1126/scirobotics.aax7329
  • Cui J, Huang TY, Luo Z, et al. Nanomagnetic encoding of shape-morphing micromachines. Nature. 2019;575:164–168. doi:10.1038/s41586-019-1713-2
  • Singth H, Singh L, Yadav M. Fundamentals of medical physiology. 8th ed. Amsterdam: Elsevier; 2018.
  • Lendlein A, Gould OEC. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat Rev Mater. 2019;4:116–133. doi:10.1038/s41578-018-0078-8
  • Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464:267–270. doi:10.1038/nature08863
  • Kim S, Hawkes E, Choy K, et al. Micro artificial muscle fiber using NiTi spring for soft robotics. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2009. p. 2228–2234. doi:10.1109/IROS.2009.5354178
  • Lee H-T, Kim M-S, Lee G-Y, et al. Shape memory alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed. Small. 2018;14:1801023. doi:10.1002/smll.201801023
  • Yuan J, Neri W, Zakri C, et al. Shape memory nanocomposite fibers for untethered highenergy microengines. Science. 2019;365:155–158. doi:10.1126/science.aaw3722
  • Ge L, Dong L, Wang D, et al. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sens Actuators A Phys. 2018;273:285–292. doi:10.1016/j.sna.2018.02.041
  • De Volder M, Reynaerts D. Pneumatic and hydraulic microactuators: a review. J Micromech Microeng. 2010;20:043001. doi:10.1088/0960-1317/20/4/043001
  • Gorissen B, Chishiro T, Takuya S et al. Flexible pneumatic twisting actuators and their application to tilting micromirrors. Actuators A Phys. 2014;216:426–431. doi:10.1016/j.sna.2014.01.015
  • Hawkes EW, Blumenschein LH, Greer JD, et al. A soft robot that navigates its environment through growth. Sci Robot. 2017;2(8):eaan3028. doi:10.1126/scirobotics.aan3028
  • Mirvakili SM, Sim D, Hunter IW, et al. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci Robot. 2020;5(5):eaaz4239. doi:10.1126/scirobotics.aaz4239
  • Konishi S, Shimomura S, Tajima S, et al. Implementation of soft microfingers for a hMSC aggregate manipulation system. Microsyst Nanoeng. 2016;2:15048. doi:10.1038/micronano.2015.48
  • Zakeri R, Zakeri R. Deformable airfoil using hybrid of mixed integration electrolysis and fluids chemical reaction (HEFR) artificial muscle technique. Sci Rep. 2021;11:5497. doi:10.1038/s41598-021-85067-y
  • Zakeri R, Zakeri R. Bio inspired general artificial muscle using hybrid of mixed electrolysis and fluids chemical reaction (HEFR). Sci Rep. 2022;12:3627. doi:10.1038/s41598-022-07799-9
  • Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun. 2010;31:10–36. doi:10.1002/marc.200900425
  • Ji X, Liu X, Cacucciolo V, et al. An autonomous untethered fast soft robotic insect driven by lowvoltage dielectric elastomer actuators. Sci Robot. 2019;4(37):eaaz6451. doi:10.1126/scirobotics.aaz6451
  • Bahramzadeh Y, Shahinpoor M. A review of ionic polymeric soft actuators and sensors. Soft Robot. 2014;1:38–52. doi:10.1089/soro.2013.0006
  • Shahinpoor M, Kim KJ. Ionic polymer-metal composites: I. fundamentals. Smart Mater Struct. 2001;10:819–833. doi:10.1088/0964-1726/10/4/327
  • Ma S, Zhang Y, Liang Y, Ren L, et al. High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv Funct Mater. 2020;30:1908508. doi:10.1002/adfm.201908508
  • Zakeri R. Towards bio-inspired artificial muscle: a mechanism based on electro-osmotic flow simulated using dissipative particle dynamics. Sci Rep. 2021;11:2235. doi:10.1038/s41598-021-81608-7
  • Brekelmans WA, Poort HW, Sloof TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop. 1972;43(5):301–317. doi:10.3109/17453677208998949
  • YD G, Ren XJ, Li JS, et al. Computer simulation of stress distribution in the metatarsals as different inversion landing angles using the finite element method. Int Orthop. 2010;34(5):669–676. doi:10.1007/s00264-009-0856-4
  • Van Donkelaar CC, Willems PJB, Muijtens AMM, et al. Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech. 1999;32:755–762. doi:10.1016/S0021-9290(99)00073-1
  • Hill AV. The heat of shortening and the dynamic constants of muscle. Proc Royal Soc London B. 1938;126:136–195.
  • Huxley AL. Muscle structure and theories of contraction. Progr Biophys Biophysical Chem. 1957;7:255–318. doi:10.1016/S0096-4174(18)30128-8
  • Ford JM. Skeletal muscle contraction simulation: a comparison in modeling [USF, Tampa graduate theses and dissertations]. 2013. https://digitalcommons.usf.edu/etd/4814.
  • Karniadakis G, Beskok A, Aluru N. Microflows and nanoflows fundamentals and simulation. New York: Textbook, Springer; 2005.
  • Zakeri R, Kamali-Moghadam R, Mani M. A new approach for chemical reaction simulation of rarefied gas flow by DSMC method. Comput Fluids. 2016;140:111–121. doi:10.1016/j.compfluid.2016.08.017
  • Zakeri R, Sabouri M, Maleki A, et al. Investigation of magneto hydro-dynamics effects on a polymer chain transfer in micro-channel using dissipative particle dynamics method. Symmetry (Basel). 2020; 12(3):397. doi:10.3390/sym12030397
  • Zakeri R, Lee ES. Simulation of nano elastic polymer chain displacement under pressure gradient/electroosmotic flow with the target of less dispersion of transition. Sci Rep. 2021;11:19610. doi:10.1038/s41598-021-99093-3
  • Zakeri R. Dissipative particle dynamics simulation of the soft micro actuator using polymer chain displacement in electro-osmotic flow. Mol Simul. 2019;45(18):1488–1497. doi:10.1080/08927022.2019.1648810
  • Jafari S, Zakeri R, Darbandi M. DPD simulation of non-newtonian electroosmotic fluid flow in nanochannel. Mol Simul. 2018;44(17):1444–1453. doi:10.1080/08927022.2018.1517414
  • Zakeri R, Ebrahimi A, Sabouri M. DPD simulation of the reciprocating translocation behaviour of polymer chain in a microchannel under variable external force. Mol Simul. 2023;49:10. doi:10.1080/08927022.2023.2212799
  • Darbandi M, Zakeri R, Schneider GE. Simulation of polymer chain driven by DPD solvent particles in nanoscale flows. International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, Quebec, Canada. 2010;8.
  • Zakeri R, Lee ES. Simulation of nano polymer chain sensor in electroosmotic flow using dissipative particle dynamics (DPD) method. ASME International Mechanical Engineering Congress and Exposition. 2010;46545.
  • Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992;19:155–160. doi:10.1209/0295-5075/19/3/001
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107:4423–4435. doi:10.1063/1.474784
  • Zhang K, Manke CW. Simulation of polymer solutions by dissipative particle dynamics. Mol Simul. 2000;25:157–166. doi:10.1080/08927020008044121
  • Li L, Chen Q, Jin F, et al. Effect of content of organophosphorus on flame retardancy mode of thermoplastic polyurethane. Polymer (Guildf). 2015;67:1–11. doi:10.1016/j.polymer.2015.04.027
  • Duong-Hong D, Wang JS, Liu GR, et al. Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluidics. 2008;4:219–225. doi:10.1007/s10404-007-0170-7
  • Duong-Hong D, Phan-Thien N, Fan X. An implementation of no-slip boundary conditions in DPD. Comput Mech. 2004;35:24–29. doi:10.1007/s00466-004-0595-8
  • Zhao T, Wang X, Jiang L, et al. Dissipative particle dynamics simulation of dilute polymer solutions—inertial effects and hydrodynamic interactions. J Rheol. 2014;58(4):1039–1058. doi:10.1122/1.4883745

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.