137
Views
41
CrossRef citations to date
0
Altmetric
REVIEW

Searching for NF-κB-Based Treatments of Ischemia Reperfusion Injury

, BS & , MD, PhD
Pages 301-315 | Received 20 Jan 2009, Accepted 09 Feb 2009, Published online: 09 Sep 2009

REFERENCES

  • Kung H C, Hoyert D L, Xu J Q, et al. Deaths: Final Data for 2005. National Center for Health Statistics, Hyattsville, MD 2008, National Vital Statistics Reports; vol. 56, no. 10
  • Sen R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity 2006; 25: 871–883
  • Li Q, Verma I M. NF-κB regulation in the immune system. Nat Rev Immunol. 2002; 2: 725–734
  • Cummins E P, Berra E, Comerford K M, et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci. 2006; 103(48)18154–18159
  • BelAiba R S, Bonello S, Zähringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007; 18: 4691–4697
  • Uden P, Kenneth N S, Rocha S. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochem J. 2008; 412: 477–484
  • Semenza G L. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001; 107: 1–3
  • Walmsley S R, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J Exp Med. 2005; 201(1)105–115
  • Rius J, Guma M, Schachtrup C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008; 435: 807–811
  • Cockman M E, Lancaster D E, Stolze I P, et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci. 2006; 103(40)14767–14772
  • Görlach A, Bonello S. The cross-talk between NF-κB and HIF-1: further evidence for a significant liaison. Biochem J. 2008; 412: e17–e19
  • Lawrence T, Gilroy D W, Colville-Nash P R, et al. Possible new role for NF-κB in the resolution of inflammation. Nat Med. 2001; 7(12)1291–1297
  • May M J, Ghosh S. Rel/NF-κB and IκB proteins: an overview. Semin Cancer Biol. 1997; 8: 63–73
  • Ghosh S, May M J, Kopp E B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol. 1998; 16: 225–260
  • Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25(6)280–288
  • Shimamoto A, Pohlman T H, Shomura S, et al. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg. 2006; 82: 2017–2023
  • Klune J R, Billiar T R, Tsung A. HMGB1 preconditioning: therapeutic application for a danger signal?. J Leukocyte Biol 2008; 83: 558–563
  • Pahl H L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999; 18: 6853–6866
  • Chariot A. 20 years of NF-κB. Biochem Pharmacol. 2006; 72: 1051–1053
  • Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol 2002; 3(3)221–226
  • Rami A, Bechmann I, Stehle J H. Exploiting endogenous anti-apoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog Neurobiol. 2008; 85(3)273–296
  • Hatada E N, Krappmann D, Scheidereit C. NF-κB and the innate immune response. Curr Opin Immunol. 2000; 12: 52–58
  • Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18: 621–663
  • Häcker H, Karin M. Is NF-κB2/p100 a direct activator of programmed cell death?. Cancer Cell. 2002; 2(6)431–433
  • Xiao G, Harhaj E W, Sun S C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol Cell. 2001; 7: 401–409
  • Whiteside S T, Epinat J C, Rice N R, Israël A. I kappa B epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J 1997; 16(6)1413–1426
  • Dejardin E, Droin N M, Delhase M, et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 2002; 17(4)525–535
  • Tergaonkar V, Perkins N D. p53 and NF-κB crosstalk: IKKα tips the balance. Mol Cell 2007; 26: 158–159
  • Tergaonkar V, Bottero V, Ikawa M, et al. IκB kinase-independent IκBα degradation pathway; functional NF-κB activity and implications for cancer therapy. Mol Cell Biol 2003; 23(22)8070–8083
  • Karin M. The IκB kinase (IKK) complex as a critical regulator of immune responses. Int Congr Ser 2005; 1285: 97–103
  • Chen L, Fischle W, Verdin E, et al. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001; 293: 1653–1657
  • Sun S C. Deubiquitylation and regulation of the immune response. Nat Rev Immunol 2008; 8: 501–511
  • Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002; 109: s81–s96
  • Berghe W V, Ndlovu M N, Hoya-Arias R, et al. Keeping up NF-κB appearances: epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol. 2006; 72: 1114–1131
  • Iida H, Schmeichel A M, Wang Y, et al. Orchestration of the inflammatory response in ischemia-reperfusion injury. J Peripher Nerv Syst. 2007; 12: 131–138
  • Ryan K M, Ernst M K, Rice N R, et al. Role of NF-κB in p53-mediated programmed cell death. Nature. 2000; 404: 892–897
  • Aggarwal B B. Apoptosis and nuclear factor-κB: a tale of association and dissociation. Biochem Pharmacol. 2000; 60: 1033–1039
  • Karin M. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J Biol Chem. 1999; 274(39)27339–27342
  • Thanos D, Maniatis T. NF-κB: a lesson in family values. Cell 1995; 80: 529–532
  • Thompson J E, Roderick J P, Erdjument-Bromage H, et al. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 1995; 80: 573–582
  • Malek S, Chen Y, Huxford T, et al. IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J Biol Chem. 2001; 276(48)45225–45235
  • Cheng J D, Ryseck R P, Attar R M, et al. Functional redundancy of the nuclear factor κB inhibitors IκBα and IκBβ. J Exp Med. 1998; 188(6)1055–1062
  • Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25(6)280–288
  • Yamamoto Y, Gaynor R B. IκB kinases: key regulators of the NF-κB pathway. Trends Biochem Sci. 2004; 29(2)72–79
  • Rius J, Guma M, Schachtrup C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008; 453: 807–811
  • Shin T, Kuboki S, Lentsch A B. Roles of nuclear factor-κB in postischemic liver. Hepatol Res. 2008; 38: 429–440
  • Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006; 72: 1493–1505
  • Balakumar P, Rohilla A, Sing M. Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: what could be the next footstep?. Pharmacol Res 2008; 57: 403–412
  • Storz P, Döppler H, Toker A. Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signalling. Mol Cell Biol. 2004; 24(7)2614–2626
  • Frangogiannis N G. Chemokines in ischemia and reperfusion. Thromb Haemos 2007; 97: 738–747
  • Teoh L KK, Grant R, Hulf J A, et al. The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery. Cardiovasc Res 2002; 53: 175–180
  • Kutuk O, Basaga H. Aspirin inhibits TNFα - and IL-1-induced NF-κB activation and sensitizes HeLa cells to apoptosis. Cytokine 2004; 25: 229–237
  • Dirksen M T, Laarman G J, Simoons M L, et al. Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res. 2007; 74: 343–355
  • Galagudza M M, Blokhin I O, Shmonin A A, et al. Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets. Cardiovasc Haematol Disord Drug Targets 2008; 8: 47–65
  • Lindhardt T B, Gadsbøll N, Kelbæk H, et al. Pharmacological modulation of the ATP sensitive potassium channels during repeated coronary occlusions: no effect on myocardial ischaemia or function. Heart 2004; 90: 425–430
  • Leesar M A, Stoddard M F, Xuan Y T, et al. Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans. J Am Coll Cardiol 2003; 42(3)437–445
  • Franco-Gou R, Roselló-Catafau J, Casillas-Ramirez A, et al. How ischaemic preconditioning protects small liver grafts. J Pathol 2006; 208: 62–73
  • Ferencz A, Racz B, Gasz B, et al. Intestinal ischemic preconditioning in rats and NF-κB activation. Microsurgery 2006; 26(1)54–57
  • Li X C, Ma Y F, Wang X H. Role of NF-κB as effector of IPC in donor livers before liver transplantation in rats. Transplant Proc. 2006; 38: 1584–1587
  • Morgan E N, Boyle E M, Wang Y, et al. An essential role for NF-κB in the cardioadaptive response to ischemia. Ann Thorac Surg. 1999; 68: 377–382
  • Funaki H, Shimizu K, Harada S, et al. Essential role for nuclear factor κB in ischemic preconditioning for ischemia reperfusion injury of the mouse liver. Transplant 2002; 74(4)551–556
  • Jiang S H, Liu C F, Zhang X L, et al. Renal protection by delayed\ischaemic preconditioning is associated with inhibition of the inflammatory response and NF-κB activation. Cell Biochem Funct 2007; 25: 335–343
  • Petrowsky H, McCormack L, Trujillo M, et al. A prospective, randomized, controlled trial comparing intermittent portal triad clamping versus ischemic preconditioning with continuous clamping for major liver resection. Ann Surg 2006; 244(6)921–930
  • Clavien P A, Yadav S, Sindram D, et al. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann Surg. 2000; 232(2)155–162
  • Clavien P A, Selzner M, Rüdiger H A, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 2003; 238(6)843–852
  • Cheung M MH, Kharbanda R K, Konstantinov I E, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery. J Am Coll Cardiol 2006; 47(11)2277–2282
  • Laskey W K, Beach D. Frequency and clinical significance of ischemic preconditioning during percutaneous coronary intervention. J Am Coll Cardiol 2003; 42(6)998–1003
  • Hausenloy D J, Mwamure P K, Venugopal V, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007; 370: 575–579
  • Bingyang J I, Liu M, Liu J, et al. Evaluation by cardiac troponin I: the effect of ischemic preconditioning as an adjunct to intermittent blood cardioplegia on coronary artery bypass grafting. Cardiac Surg 2007; 22: 394–400
  • Ali Z A, Callaghan C J, Lim E, et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair. Circulation 2008; 116(S1)I98–I105
  • Konstantinov I E, Li J, Cheung M M, et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 2005; 79: 1691–1695
  • Kharbanda R K, Mortensen U M, White P A, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002; 106: 281–2883
  • Pasupathy S, Homer-Vanniasinkam S. Surgical implications of ischemic preconditioning. Arch Surg 2005; 140: 405–409
  • Hausenloy D J, Yellon D M. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008; 79(3)377–386
  • Amador A, Grande L, Martí J, et al. Ischemic pre-conditioning in deceased donor liver transplantation: a prospective randomized clinical trial. Am J Transplant 2007; 7: 2180–2189
  • Ambros J T, Herrero-Fresneda I, Borau O G, et al. Ischemic preconditioning in solid organ transplantation: from experimental to clinics. Transpl Int. 2007; 20: 219–229
  • Ji B, Liu M, Liu J, et al. Evaluation by cardiac troponin I: the effect of ischemic preconditioning as an adjunct to intermittent blood cardioplegia on coronary artery bypass grafting. J Cardiac Surg 2007; 22: 394–400
  • Gutiérrez S H, Kuri M R, Rojas del Castillo E. Cardiac role of the transcription factor NF-κB. Cardiovasc Haematol Disord Drug Targets. 2008; 8: 153–160
  • Cha J, Wang Z, Ao L, et al. Cytokines link toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 2008; 85: 1678–1685
  • Boyd J H, Mathur S, Wang Y, et al. Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res 2006; 72: 384–393
  • Shimamoto A, Chong A J, Yada M, et al. Inhibition of toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation. 2006; 114s: I270–I274
  • Mullarkey M, Rose J R, Bristol J, et al. Inhibition of endotoxin response by E5564, a novel toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther. 2003; 304(3)1093–1102
  • Li C, Ha T, Kelley J, et al. Modulating toll-like receptor mediated signalling by (1 → 3)-β -D-glucan rapidly induces cardioprotection. Cardiovasc Res. 2004; 61: 538–547
  • Schulz R, Aker S, Belosjorow S, et al. TNFα in ischemia/reperfusion injury and heart failure. Basic Res Cardiol 2004; 99: 8–11
  • Gu Q, Yang X P, Bonde P, et al. Inhibition of TNF-α reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J Cardiovasc Pharmacol. 2006; 48(6)320–328
  • Yu X, Patterson E, Huang S, et al. Tumor necrosis factor α, rapid ventricular tachyarrhythmias, and infarct size in canine models of myocardial infarction. J Cardiovasc Pharmacol 2005; 45(2)153–159
  • Esposito E, Mazzon E, Muià C, et al. Splanchnic ischemia and reperfusion injury is reduced by genetic or pharmacological inhibition of TNF-α. J Leukoc Biol. 2007; 81: 1032–1043
  • Rusai K, Huang H, Sayed N, et al. Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transpl Int. 2008; 21: 572–580
  • Akuzawa S, Kazui T, Shi E, et al. Interleukin-1 receptor antagonist attenuates the severity of spinal cord ischemic injury in rabbits. J Vascular Surg. 2008; 48(3)694–700
  • Onai Y, Suzuki J, Kakuta T, et al. Inhibition of IκB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. J Cardiovasc Res. 2004; 63: 51–59
  • Moss N C, Stansfield W E, Willis M S, et al. IKKβ inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am J Physiol. Heart Circ Physiol 2007; 293: 2248–2253
  • Oka S, Kamata H, Kamata K, et al. N-Acetylcysteine suppresses TNF-induced NF-κB activation through inhibition of IκB kinases. FEB S 2000; 472: 196–202
  • Tian X F, Zhang X S, Li Y H, et al. Proteasome inhibition attenuates lung injury induced by intestinal ischemia reperfusion in rats. Life Sci 2006; 79: 2069–2076
  • Itoh M, Takaoka M, Shibata A, et al. Preventive effect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats. J Pharmacol Exp Therapeut. 2001; 298(2)501–507
  • Tian X F, Zhang X S, Li Y H, et al. Proteasome inhibition attenuates lung injury induced by intestinal ischemia reperfusion in rats. Life Sci. 2006; 79: 2069–2076
  • Yao J H, Li Y H, Wang Z Z, et al. Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. Clin Exp Pharmacol Physiol. 2007; 34: 1102–1108
  • Phillips J B, Williams A J, Adams J, et al. Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 2000; 31: 1686–1693
  • Zhang L, Zhang Z G, Zhang R L, et al. Postischemic (6-hr) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke 2001; 32: 2926–2931
  • Williams A J, Berti R, Dave J R, et al. Delayed treatment of ischemia/reperfusion brain injury: extended therapeutic window with the proteosome inhibitor MLN519. Stroke. 2004; 35: 1186–1191
  • Ishiyama T, Dharmarajan S, Hayama M, et al. Inhibition of nuclear factor κB by IκB suppressor gene transfer ameliorates ischemia-reperfusion injury after experimental lung transplantation. J Thorac Cardiovasc Surg 2005; 130: 194–201
  • Kanaan S A, Kozower B D, Suda T, et al. Intratracheal adenovirus-mediated gene transfer is optimal in experimental lung transplantation. J Thorac Cardiovasc Surg. 2002; 124: 1130–1136
  • Tagawa T, Kozower B D, Kanaan S A, et al. Tumor necrosis factor inhibitor gene transfer ameliorates lung graft ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003; 126: 1147–1154
  • Suzuki T, Yamashita K, Jomen W, et al. The novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, prevents local and remote organ injury following intestinal ischemia/reperfusion in rats. J Surg Res. 2008; 149(1)69–75
  • Ariga A, Namekawa J I, Matsumoto N, et al. Inhibition of tumor necrosis factor-induced nuclear translocation and activation of NF-κB by dehydroxymethylepoxyquinomicin. J Biol Chem 2002; 277(27)24625–24630
  • Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element “decoy” against nuclear factor-κB binding site prevents myocardial infarction. Nat Med. 1997; 3(8)894–899
  • Isner J M. Oligonucleotide therapeutics—novel cardiovascular targets. Nat Med. 1997; 3(8)834–835
  • Xu M Q, Shuai X R, Yan M L, et al. Nuclear factor-κB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft. World J Gastroenterol. 2005; 11(44)6960–6967
  • Cao C C, Ding X Q, Ou Z L, et al. In vivo transfection of NF-κB decoy oligodeoxynucleotides attenuates renal ischemia/reperfusion injury in rats. Kidney Int. 2004; 65: 834–845
  • Banafsche R, Günther L, Nefflen J U, et al. NF-κB antisense oligonucleotides reduce leukocyte-endothelial interaction in hepatic ischemia-reperfusion. Transplant Proc. 2001; 33: 3726–3727
  • Wang Y, Rangan G K, Tay Y C, et al. Induction of monocyte chemoattractant protein-1 by albumin is mediated by nuclear factor κB in proximal tubule cells. J Am Soc Nephrol. 1999; 10: 1204–1213
  • Qian J M, Zhang H, Wu X F, et al. Improvement of recipient survival after small size graft liver transplantation in rats with preischemic manipulation or administering antisense against nuclear factor-κB. Transpl Int. 2007; 20: 784–789
  • Koopman P AR. Confidence intervals for the ratio of two binomial proportions. Biometrics 1984; 40: 513–517
  • Motulsky H. Intuitive Biostatistics, 1st ed. Oxford University Press, USA 1995
  • Price R M, Bonett D G. Distribution-free confidence intervals for difference and ratio of medians. J Stat Comput Sim 2002; 72(2)119–124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.