202
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Experimental Design and Surgical Approach to Create a Spinal Fusion Model in a New Zealand White Rabbit (Oryctolagus cuniculus)

, M.D. M.B.A, , DVM, , DVM PhD, , PhD & , M.D.
Pages 226-234 | Received 30 Jun 2016, Accepted 08 Sep 2016, Published online: 14 Oct 2016

REFERENCES

  • Albee FH. An experimental study of bone growth and the spinal bone transplant. JAMA. 1913;60(14):1044–1049.
  • Schimandle JH, Boden SD. Spine update. The use of animal models to study spinal fusion. Spine (Phila Pa 1976). 1994;19(17):1998–2006.
  • Drespe IH, Polzhofer GK, Turner AS, et al. Animal models for spinal fusion. Spine J. 2005;5(6):S209–S16.
  • Riordan AM, Rangarajan R, Balts JW, et al. Reliability of the rabbit postero‐lateral spinal fusion model: A meta‐analysis. J Orthop Res. 2013;31(8):1261–1269.
  • Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model: Radiographic, histologic, and biomechanical healing characteristics. Spine (Phila Pa 1976). 1995;20(4):412–420.
  • Ragni P, Lindholm TS. Interaction of allogeneic demineralized bone matrix and porous hydroxyapatite bioceramics in lumbar interbody fusion in rabbits. Clin Orthop Relat Res. 1991;(272):292–299.
  • Flatley TJ, Lynch KL, Benson M. Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop Relat Res. 1983;(179):246–252.
  • Khan SN, DuRaine G, Virk SS, et al. The temporal role of leptin within fracture healing and the effect of local application of recombinant leptin on fracture healing. J Orthop Trauma. 2013;27(11):656–662.
  • Schindeler A, Liu R, Little DG. The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differentiation. 2009;77(1):12–18.
  • Bobyn J, Rasch A, Kathy M, et al. Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice. J Orthop Res. 2014;32(8):1090–1094.
  • Rao RD, Bagaria VB, Cooley BC. Posterolateral intertransverse lumbar fusion in a mouse model: surgical anatomy and operative technique. Spine J. 2007;7(1):61–67.
  • Iannaccone PM, Jacob HJ. Rats! Disease Models Mech.2009;2(5–6):206–210.
  • Kubo T, Shiga T, Hashimoto J, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. 1999;68(5):197–202.
  • Lelovas PP, Xanthos TT, Thoma SE, et al. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424–430.
  • Sandhu HS, Khan SN. Animal models for preclinical assessment of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976). 2002;27(16 Suppl 1):S32–S38.
  • Thomas I, Kirkaloy-Wilis WH, Singh S, et al. Experimental spinal fusion in guinea pigs and dogs: The effect of immobilization. Clin Orthop Relat Res. 1975;112:363.
  • Tsuang Y-H, Yang RS, Chen PQ, et al. Experimental allograft in spinal fusion in dogs. Taiwan Yi XueHui ZaZhi.1989;88(10):989–994.
  • Zerwekh JE, Kourosh S, Scheinberg R, et al. Fibrillar collagen‐biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res. 1992;10(4):562–572.
  • Shirado O, Zdeblick TA, McAfee PC, et al. Quantitative histologic study of the influence of anterior spinal instrumentation and biodegradable polymer on lumbar interbody fusion after corpectomy. Acanine model. Spine (Phila Pa 1976). 1992;17(7):795–803.
  • Farrokhi MR, Torabinezhad S, Ghajar KA. Pilot study of a new acrylic cage in a dog cervical spine fusion model. Clin Spine Surg. 2010;23(4):272–277.
  • Pintar FA, Maiman DJ, Hollowell JP, et al. Fusion rate and biomechanical stiffness of hydroxylapatite versus autogenous bone grafts for anterior discectomy. An in vivo animal study. Spine (Phila Pa 1976). 1994;19(22):2524–2528.
  • Zdeblick TA, Cooke ME, Kunz DN, et al. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine (Phila Pa 1976). 1994;19(20):2348–2357.
  • Hoogendoorn RJW, Helder MN, Wuisman PIJM, et al. Adjacent segment degeneration: observations in a goat spinal fusion study. Spine (Phila Pa 1976). 2008;33(12):1337–1343.
  • Zhang H, Sucato DJ, Welch RD. Recombinant human bone morphogenic protein-2-enhanced anterior spine fusion without bone encroachment into the spinal canal: A histomorphometric study in a thoracoscopically instrumented porcine model. Spine (Phila Pa 1976). 2005;30(5):512–518.
  • Newton PO, Farnsworth CL, Faro FD, et al. Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: Disc health and motion preservation. Spine (Phila Pa 1976). 2008;33(7):724–733.
  • Takahashi T, Tominaga T, Yoshimoto T, et al. Biomechanical evaluation of hydroxyapatite intervertebral graft and anterior cervical plating in a porcine cadaveric model. Biomed Mater Eng. 1997;7(2):121–127.
  • Suzuki K, Mochida J, Chiba M, et al. Posterior stabilization of degenerative lumbar spondylolisthesis with a Leeds-Keio artificial ligament. A biomechanical analysis in a porcine vertebral model. Spine (Phila Pa 1976). 1999;24(1):26–31.
  • Gurwitz GS, Dawson JM, McNamara MJ, et al. Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine (Phila Pa 1976). 1993;18(8):977–982.
  • Schulze M, Hartensuer R, Gehweiler D, et al. How does free rod-sliding affect the posterior instrumentation for a dynamic stabilization using a bovine calf model? Spine (Phila Pa 1976). 2015;40(3):E133–E140.
  • Khan SN, Toth JM, Gupta K, et al. Early-term and mid-term histologic events during single-level posterolateral intertransverse process fusion with rhBMP-2/collagen carrier and a ceramic bulking agent in a nonhuman primate model: Implications for bone graft preparation. J Spinal Disord Tech. 2014;27(4):212–219.
  • Hecht BP, Fischgrund JS, Herkowitz HN, et al. The use of recombinant human bone morphogenetic protein 2 (rhBMP‐2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine (Phila Pa 1976). 1999;24(7):629–636.
  • Boden SD, Martin Jr GJ, Morone MA, et al. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite–tricalcium phosphate after laminectomy in the nonhuman primate. Spine (Phila Pa 1976). 1999;24(12):1179–1185.
  • Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–306.
  • Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244–258.
  • Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001;55(3):187–193.
  • Jones SR, Carley S, Harrison M. An introduction to power and sample size estimation. Emerg Med J. 2003;20(5):453–458.
  • Naduvilath TJ, John RK, Dandona L. Sample size for ophthalmology studies. Indian J Ophthalmol. 2000;48(3):245–250.
  • Anderson LC GOK. Preanesthesia, Anesthesia, Analgesia, and Euthanasia. Fox J, ed. San Diego, CA: Elsevier; 2015. 1 p.
  • Zunariah B, Zakaria Z, Zarida CN, et al. Posterolateral intertransverse lumbar arthrodesis in the New Zealand white rabbit model: The illustration of an alternative surgical approach. Int Med J Malaysia. 2012;11(2):19–22.
  • Boden SD, Moskovitz PA, Morone MA, et al. Video-assisted lateral intertransverse process arthrodesis. Validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (rhesus) models. Spine (Phila Pa 1976). 1996;21(22):2689–2697.
  • Hasharoni A, Zilberman Y, Turgeman G, et al. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein—2. J Neurosurg Spine. 2005;3(1):47–52.
  • Nakajima T, Iizuka H, Tsutsumi S, et al. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation. Spine (Phila Pa 1976). 2007;32(22):2432–2436.
  • Sheyn D, Pelled G, Zilberman Y, et al. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells. 2008;26(4):1056–1064.
  • Miyazaki M, Sugiyama O, Zou J, et al. Comparison of lentiviral and adenoviral gene therapy for spinal fusion in rats. Spine (Phila Pa 1976). 2008;33(13):1410–1417.
  • Hsu WK, Wang JC, Liu NQ, et al. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am. 2008;90(5):1043–1052.
  • Qian Y, Lin Z, Chen J, et al. Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. Tissue Eng Part A. 2009;15(11):3547–3558.
  • Namikawa T, Terai H, Suzuki E, et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and β-tricalcium phosphate in a rabbit model. Spine (Phila Pa 1976). 2005;30(15):1717–1722.
  • Abbah SA, Lam CXL, Hutmacher DW, et al. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials. 2009;30(28):5086–5093.
  • Miyazaki M, Morishita Y, He W, et al. A porcine collagen-derived matrix as a carrier for recombinant human bone morphogenetic protein-2 enhances spinal fusion in rats. Spine J. 2009;9(1):22–30.
  • Morisue H, Matsumoto M, Chiba K, et al. A novel hydroxyapatite fiber mesh as a carrier for recombinant human bone morphogenetic protein-2 enhances bone union in rat posterolateral fusion model. Spine (Phila Pa 1976). 2006;31(11):1194–1200.
  • Kiely PD, Brecevich AT, Taher F, et al. Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J. 2014;14(9):2155–2163.
  • Barnes B, Boden SD, Louis-Ugbo J, et al. Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in bon-human primates. Spine (Phila Pa 1976). 2005;30(10):1127–1133.
  • Lee T-C, Ho J-T, Hung K-S, et al.. Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment.Neurosurgery. 2006;58(2):373–380.
  • Alanay A, Chen C, Lee S, et al. The adjunctive effect of a binding peptide on bone morphogenetic protein enhanced bone healing in a rodent model of spinal fusion. Spine (Phila Pa 1976). 2008;33(16):1709–1713.
  • Roberts I, Kwan I, Evans P, et al. Does animal experimentation inform human healthcare? Observations from a systematic review of international animal experiments on fluid resuscitation. BMJ. 2002;324(7335):474–476.
  • Daffner SD, Waugh S, Norman TL, et al. Effect of serum nicotine level on posterior spinal fusion in an in vivo rabbit model. Spine J. 2015;15(6):1402–1408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.