291
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Guided Bone Regeneration of Femoral Segmental Defects using Equine Bone Graft: An In-Vivo Micro-Computed Tomographic Study in Rats

, BDS, MS, Post-graduate Student, , BDS, MDS, FFDRCS(Ire) FDSRCPS(Glasgow), Lecturer, , BDS, SSC-OMFS, M.Sc, FRCD(c), Dip. ABOMS, Associate Professor and Chairman, , BDS, MS, D.Sc, Professor & , DDS, MSc, Diplomate, Professor
Pages 456-466 | Received 19 Dec 2017, Accepted 12 Feb 2018, Published online: 05 Mar 2018

REFERENCES

  • Trotta DR, Gorny C, Zielak JC, Gonzaga CC, Giovanini AF, Deliberador TM. Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: Histologic and histomorphometric study in rat calvaria. J Cranio-Maxillofacial Surg. 2014;42(6):738–43. doi:10.1016/j.jcms.2013.11.004.
  • Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y. Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. J Materials Sci Materials Med. 2008;19(6):2367–76. doi:10.1007/s10856-007-3348-3.
  • Theos C, Koulouvaris P, Kottakis S, Demertzis N. Reconstruction of tibia defects by ipsilateral vascularized fibula transposition. Archi Trauma Surg. 2008;128(2):179–84. doi:10.1007/s00402-007-0301-3.
  • Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE. Quantitative assessment of scaffold and growth factor‐mediated repair of critically sized bone defects. J Orthopaedic Res. 2007;25(7):941–50. doi:10.1002/jor.20372.
  • den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJTM. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein‐I or autologous bone marrow. J Orthopaedic Res. 2003;21(3):521–8. doi:10.1016/S0736-0266(02)00205-X.
  • Jensen SS, Broggini N, Hjørting‐Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and β‐tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Implants Res. 2006;17(3):237–43. doi:10.1111/j.1600-0501.2005.01257.x.
  • Di Stefano DA, Artese L, Iezzi G, Piattelli A, Pagnutti S, Piccirilli M, et al. Alveolar ridge regeneration with equine spongy bone: a clinical, histological, and immunohistochemical case series. Clin Implant Dentistry Related Res. 2009;11(2):90–100. doi:10.1111/j.1708-8208.2008.00104.x.
  • Heo S, Na C, Kim N. Evaluation of equine cortical bone transplantation in a canine fracture model. Veterinarni Medicina. 2011;56(3):110–8. doi:10.17221/3156-VETMED.
  • Simion M, Nevins M, Rocchietta I, Fontana F, Maschera E, Schupbach P, et al. Vertical ridge augmentation using an equine block infused with recombinant human platelet-derived growth factor-BB: a histologic study in a canine model. Int J Periodontics Restorative Dentistry. 2009;29(3):245–55. Epub 2009/06/23.
  • Perrotti V, Nicholls BM, Piattelli A. Human osteoclast formation and activity on an equine spongy bone substitute. Clin Oral Implants Res. 2009;20(1):17–23. doi:10.1111/j.1600-0501.2008.01608.x. PMID: 19126103
  • Nevins M, Hezaimi KA, Schupbach P, Karimbux N, Kim DM. Vertical ridge augmentation using an equine bone and collagen block infused with recombinant human platelet-derived growth factor-BB: a randomized single-masked histologic study in non-human primates. J Periodontol. 2012;83(7):878–84. doi:10.1902/jop.2012.110478. PMID: 22220770
  • Drosse I, Volkmer E, Seitz S, Seitz H, Penzkofer R, Zahn K, et al. Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective. Tissue Engineering Part C: Methods. 2008;14(1):79–88. doi:10.1089/tec.2007.0234.
  • Poser L, Matthys R, Schawalder P, Pearce S, Alini M, Zeiter S. A standardized critical size defect model in normal and osteoporotic rats to evaluate bone tissue engineered constructs. BioMed Res Int. 2014;2014:348635. Epub 2014/04/17. doi:10.1155/2014/348635. PMID: 24738053
  • Gugala Z, Lindsey RW, Gogolewski S. New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp. 2007;253:147–161. doi:10.1002/masy.200750722.
  • Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protocols. 2012;7(10):1918–29. Epub 2012/09/29. doi:10.1038/nprot.2012.113. PMID: 23018195
  • Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Odontology. 2016;104(2):199–210. Epub 2015/07/15. doi:10.1007/s10266-015-0211-8. PMID: 26156449
  • Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials. 2014;35(27):7800–10. doi:10.1016/j.biomaterials.2014.05.052. PMID: 24952976
  • Al-Hezaimi K, Ramalingam S, Al-Askar M, ArRejaie AS, Nooh N, Jawad F, et al. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats. Int J Oral Sci. 2016;8(1):7–15. Epub 2016/03/31. doi:10.1038/ijos.2015.34. PMID: 27025260
  • Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comparative Med. 2008;58(5):424.
  • Mark H, Bergholm J, Nilsson A, Rydevik B, Strömberg L. An external fixation method and device to study fracture healing in rats. Acta Orthopaedica Scandinavica. 2003;74(4):476–82. doi:10.1080/00016470310017820. PMID: 14521302
  • Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 2006;39(4):922–31. doi:10.1016/j.bone.2006.04.019. PMID: 16757219
  • Woodruff MA, Lange C, Reichert J, Berner A, Chen F, Fratzl P, et al. Bone tissue engineering: from bench to bedside. Materials Today. 2012;15(10):430–5. doi:10.1016/S1369-7021(12)70194-3.
  • Jäger M, Sager M, Lensing-Höhn S, Krauspe R. The critical size bony defect in a small animal for bone healing studies (II): Implant evolution and surgical technique on a rat's femur/Der kritische Knochendefekt am Kleintier zur Untersuchung der Knochenheilung (II): Implantatentwicklung und Operationstechnik am Rattenfemur. Biomedizinische Technik/Biomedical Engineering. 2005;50(5):137–42. doi:10.1515/BMT.2005.020.
  • Mehta M, Schell H, Schwarz C, Peters A, Schmidt-Bleek K, Ellinghaus A, et al. A 5-mm femoral defect in female but not in male rats leads to a reproducible atrophic non-union. Arch Orthopaedic Trauma Surg. 2011;131(1):121–9. doi:10.1007/s00402-010-1155-7.
  • Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo μCT imaging. J Bone Mineral Res. 2004;19(10):1640–50. doi:10.1359/JBMR.040705.
  • Umoh JU, Sampaio AV, Welch I, Pitelka V, Goldberg HA, Underhill TM, et al. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model. Physics Med Biol. 2009;54(7):2147. doi:10.1088/0031-9155/54/7/020.
  • Nooh N, Ramalingam S, Al-Kindi M, Al-Rasheed A, Al-Hamdan KS, Al-Hezaimi K. Real-time assessment of guided bone regeneration in standardized calvarial defects in rats using bio-oss with and without collagen membrane: An in vivo microcomputed tomographic and histologic experiment. Int J Periodontics Restorative Dentistry. 2016;36 Suppl:s139–49. Epub 2016/04/01. doi:10.11607/prd.2354.
  • Verna C, Dalstra M, Wikesjö UM, Trombelli L. Healing patterns in calvarial bone defects following guided bone regeneration in rats. J Clin Periodontol. 2002;29(9):865–70. doi:10.1034/j.1600-051X.2002.290912.x. PMID: 12423301
  • Friedmann A, Strietzel FP, Maretzki B, Pitaru S, Bernimoulin JP. Histological assessment of augmented jaw bone utilizing a new collagen barrier membrane compared to a standard barrier membrane to protect a granular bone substitute material. Clin Oral Implants Res. 2002;13(6):587–94. doi:10.1034/j.1600-0501.2002.130603.x. PMID: 12519332
  • Hämmerle CH, Jung RE, Yaman D, Lang NP. Ridge augmentation by applying bioresorbable membranes and deproteinized bovine bone mineral: a report of twelve consecutive cases. Clin Oral Implants Res. 2008;19(1):19–25. PMID: 17956571
  • De Angelis N, Scivetti M. Lateral ridge augmentation using an equine flex bone block infused with recombinant human platelet-derived growth factor BB: a clinical and histologic study. Int J Periodontics Restorative Dentistry. 2011;31(4):383–388.
  • Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012;23(7):767–74. doi:10.1111/j.1600-0501.2011.02228.x. PMID: 21635560
  • Fassbender M, Minkwitz S, Kronbach Z, Strobel C, Kadow-Romacker A, Schmidmaier G, et al. Local gentamicin application does not interfere with bone healing in a rat model. Bone. 2013;55(2):298–304. doi:10.1016/j.bone.2013.04.018. PMID: 23631877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.