323
Views
7
CrossRef citations to date
0
Altmetric
Original Research

The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal In Vivo Micro-CT Study in a Rat Model

, BDS, MS, , BDS, SSC-OMFS, MSc, FRCD(c), Dip ABOMSORCID Icon, , BDS, MDS, FFDRCS(Ire), FDSRCPS(Glasgow)ORCID Icon, , BDS, MS, DSc & , BDS, MSc

References

  • Binsalah MA, Ramalingam S, Alkindi M, Nooh N, Al-Hezaimi K. Guided bone regeneration of femoral segmental defects using equine bone graft: an in-vivo micro-computed tomographic study in rats. J Invest Surg. 2018;5:1–11.
  • Yang X, Li Y, Huang Q, Yang J, Shen B, Pei F. Evaluation of a biodegradable graft substitute in rabbit bone defect model. Indian J Orthop. 2012;46(3):266–273.
  • Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18.
  • Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–464.
  • Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567–576.
  • Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Odontology 2016;104(2):199–210.
  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36(3):S20–S27.
  • Eftekhari H, Farahpour MR, Rabiee SM. Histopathological evaluation of potential impact of beta-tricalcium phosphate (HA + beta-TCP) granules on healing of segmental femur bone defect. BLL. 2015;116(01):30–34.
  • Al-Hezaimi K, Al-Hamdan KS, Al-Askar M, et al. Guided bone regeneration in standardized calvarial defects in rats using Bio-Oss and beta-tricalcium phosphate with adjunct platelet-derived growth factor therapy: a real-time in vivo microcomputed tomographic, biomechanical, and histologic analysis. Int J Periodontics Restorative Dent. 2016;36(1):83–73.
  • Al-Hezaimi K, Ramalingam S, Al-Askar M, et al. Real-time-guided bone regeneration around standardized critical size calvarial defects using 30 bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats. Int J Oral Sci. 2016;8(1):7–15.
  • Elangovan S, D'Mello SR, Hong L, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 2014;35(33):9049–9047.
  • Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res. 2011;29(12):1795–1803.
  • Kaigler D, Avila G, Wisner-Lynch L, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther. 2011;11(3):375–385.
  • Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Hicklin DJ. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994;15(2):203–208.
  • Joyce ME, Jingushi S, Scully SP, Bolander ME. Role of growth factors in fracture healing. J Funct Prog. 1991;1(01):1–416.
  • Alrasheed A, Al-Ahmari F, Ramalingam S, Nooh N, Wang CY, Al-Hezaimi K. Real-time assessment of guided bone regeneration in standardized calvarial defects using a combination of bone graft and platelet-derived growth factor with and without collagen membrane: an in vivo microcomputed tomographic and histologic experiment in rats. Int J Periodontics Restor Dent. 2016;36 (Suppl):s173–s186.
  • Simion M, Nevins M, Rocchietta I, et al. Vertical ridge augmentation using an equine block infused with recombinant human platelet-derived growth factor-BB: a histologic study in a canine model. Int J Periodontics Restorative Dent. 2009;29(3):245–255.
  • Nevins ML, Reynolds MA. Tissue engineering with recombinant human platelet-derived growth factor BB for implant site development. Comp Contin Educ Dent. 2011;32(2):18–20.
  • Brown KV, Li B, Guda T, Perrien DS, Guelcher SA, Wenke JC. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng A. 2011;17(1):13–46.
  • Drosse I, Volkmer E, Seitz S, et al. Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective. Tissue Eng C Methods. 2008;14(1):79–88.
  • Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG, Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;77(10):1918–1929.
  • Kim J-H, Kim H-W. Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med. 2013;10(6):310–316.
  • Al-Hezaimi K, Al-Tayar BA, Bajuaifer YS, Salameh Z, Al-Fouzan K, Tay FR. A hybrid approach to direct pulp capping by using emdogain with a capping material. J Endod. 2011;37(5):667–672.
  • Al-Hezaimi K, Salameh Z, Al-Fouzan K, Al Rejaie M, Tay FR. Histomorphometric and micro–computed tomography analysis of pulpal response to three different pulp capping materials. J Endod. 2011;37(1):A4–A12.
  • Li Y, Chen S-K, Li L, Qin L, Wang X-L, Lai Y-X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthopaedic Transl. 2015;3(3):95–104.
  • Chu T-MG, Warden SJ, Turner CH, Stewart RL. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 2007;28(3):459–467.
  • Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo microCT imaging. J Bone Miner Res. 2004;19(10):1640–1650.
  • Kochi G, Sato S, Fukuyama T, et al. Analysis on the guided bone augmentation in the rat calvarium using a microfocus computerized tomography analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):e42–e48.
  • Umoh JU, Sampaio AV, Welch I, et al. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model. Phys Med Biol. 2009;54(7):2147.
  • Ramalingam S, Babay N, Al-Rasheed A, et al. Efficacy of mucograft vs conventional resorbable collagen membranes in guided bone regeneration around standardized calvarial defects in rats: a histologic and biomechanical assessment. Int J Periodontics Restorative Dent. 2016;36 (Suppl):s99–s107.
  • Prathap S, Hegde S, Kashyap R, Prathap MS, Arunkumar MS. Clinical evaluation of porous hydroxyapatite bone graft (Periobone G) with and without collagen membrane (Periocol) in the treatment of bilateral grade II furcation defects in mandibular first permanent molars. J Indian Soc Periodontol. 2013;17(2):228–234.
  • Schwarz F, Ferrari D, Podolsky L, Mihatovic I, Becker J. Initial pattern of angiogenesis and bone formation following lateral ridge augmentation using rhPDGF and guided bone regeneration: an immunohistochemical study in dogs. Clin Oral Implants Res. 2010;21(1):90–99.
  • Neamat A, Gawish A, Gamal-Eldeen AM. β-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs. Arch Oral Biol. 2009;54(12):1083–1090.
  • Kaushick BT, Jayakumar ND, Padmalatha O, Varghese S. Treatment of human periodontal infrabony defects with hydroxyapatite + beta tricalcium phosphate bone graft alone and in combination with platelet rich plasma: a randomized clinical trial. Indian J Dent Res. 2011;22(4):505–510.
  • Kishore DT, Bandiwadekar T, Padma R, Debunath S, Profulla, Reddy A. Evaluation of relative efficacy of beta-tricalcium phosphate with and without type I resorbable collagen membrane in periodontal infrabony defects: a clinical and radiographic study. J Contemp Dent Pract. 2013;14(2):193–201.
  • Weijs WL, Siebers TJ, Kuijpers-Jagtman AM, Berge SJ, Meijer GJ, Borstlap WA. Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg 2010;39(5):424–429.
  • Nevins M, Giannobile WV, McGuire MK, et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol 2005;76(12):2205–2215.
  • Simion M, Rocchietta I, Monforte M, Maschera E. Three-dimensional alveolar bone reconstruction with a combination of recombinant human platelet-derived growth factor BB and guided bone regeneration: a case report. Int J Periodontics Restor Dent. 2008;20(4):239.
  • Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials 2009;30(28):4956–4966.
  • Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop 2017;41(2):221–237.
  • Casati L, Celotti F, Negri-Cesi P, Sacchi MC, Castano P, Colciago A. Platelet derived growth factor (PDGF) contained in platelet rich plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton. Cell Adh Migr. 2014;8(6):595–602.
  • Lee JW, Kwon OH, Kim TK, et al. Platelet-rich plasma: quantitative assessment of growth factor levels and comparative analysis of activated and inactivated groups. Arch Plast Surg. 2013;40(5):530–535.
  • Al-Hazmi BA, Al-Hamdan KS, Al-Rasheed A, Babay N, Wang HL, Al-Hezaimi K. Efficacy of using PDGF and xenograft with or without collagen membrane for bone regeneration around immediate implants with induced dehiscence-type defects: a microcomputed tomographic study in dogs. J Periodontol 2013;84(3):371–378.
  • Choo T, Marino V, Bartold PM. Effect of PDGF‐BB and beta‐tricalcium phosphate (β‐21 TCP) on bone formation around dental implants: a pilot study in sheep. Clin Oral Implants Res. 2013;24(2):158–166.
  • Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am. 1998;42(3):467–490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.