228
Views
11
CrossRef citations to date
0
Altmetric
Original Research

High SPINK1 Expression Predicts Poor Prognosis and Promotes Cell Proliferation and Metastasis of Hepatocellular Carcinoma

, , , , , , , , & show all

References

  • Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–380. doi:10.1002/hep.29086.
  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–1255. doi:10.1016/S0140-6736(11)61347-0.
  • Fukuda S, Itamoto T, Nakahara H, et al. Clinicopathologic features and prognostic factors of resected solitary small-sized hepatocellular carcinoma. Hepatogastroenterology. 2005;52(64):1163–1167.
  • Stenman UH. Role of the tumor-associated trypsin inhibitor SPINK1 in cancer development. Asian J Androl. 2011;13(4):628–629. doi:10.10.38/aja.2011.45.
  • Huhtala ML, Pesonen K, Kalkkinen N, Stenman UH. Purification and characterization of a tumor-associated trypsin inhibitor from the urine of a patient with ovarian cancer. J Biol Chem. 1982;257(22):13713–13716.
  • Kazal LA, Spicer DS, Brahinsky RA. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc. 1948;70(9):3034–3040. doi:10.1021/ja01189a060.
  • Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta. 2014;431:260–269. doi:10.1016/j.cca.2014.02.014.
  • Gaber A, Johansson M, Stenman UH, et al. High expression of tumour-associated trypsin inhibitor correlates with liver metastasis and poor prognosis in colorectal cancer. Br J Cancer. 2009;100(10):1540–1548. doi:10.1038/sj.bjc.6605047.
  • Rasanen K, Itkonen O, Koistinen H, Stenman UH. Emerging Roles of SPINK1 in Cancer. Clin Chem. 2016;62(3):449–457. doi:10.1373/clinchem.2015.241513.
  • Wiksten JP, Lundin J, Nordling S, et al. High tissue expression of tumour-associated trypsin inhibitor (TATI) associates with a more favourable prognosis in gastric cancer. Histopathology. 2005;46(4):380–388. doi:10.1111/j.1365-2559.2005.02073.x.
  • Tiwari R, Pandey SK, Goel S, et al. SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression. Oncogenesis. 2015;4(8):e162–e162. doi:10.1038/oncsis.2015.23.
  • Chen YT, Tsao SC, Yuan SS, Tsai HP, Chai CY. Serine Protease Inhibitor Kazal Type 1 (SPINK1) Promotes Proliferation of Colorectal Cancer Through the Epidermal Growth Factor as a Prognostic Marker. Pathol Oncol Res. 2015;21(4):1201–1208. doi:10.1007/s12253-015-9949-0.
  • Gouyer V, Fontaine D, Dumont P, et al. Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells. Oncogene. 2008;27(29):4024–4033. doi:10.1038/onc.2008.42.
  • Flavin R, Pettersson A, Hendrickson WK, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20(18):4904–4911. doi:10.1158/1078-0432.CCR-13-1341.
  • Wang C, Wang L, Su B, et al. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate. 2014;74(7):689–701. doi:10.1002/pros.22787.
  • Soon WW, Miller LD, Black MA, et al. Combined genomic and phenotype screening reveals secretory factor SPINK1 as an invasion and survival factor associated with patient prognosis in breast cancer. EMBO Mol Med. 2011;3(8):451–464. doi:10.1002/emmm.201100150.
  • Lee YJ, Ha YJ, Na Kang Y, et al. The autophagy-related marker LC3 can predict prognosis in human hepatocellular carcinoma. PLoS One. 2013;8(11):e81540. doi:10.1371/journal.pone.0081540.
  • Guo Y, Wang J, Zhang L, et al. Theranostical nanosystem-mediated identification of an oncogene and highly effective therapy in hepatocellular carcinoma. Hepatology. 2016;63(4):1240–1255. doi:10.1002/hep.28409.
  • Lyytinen I, Lempinen M, Nordin A, et al. Prognostic significance of tumor-associated trypsin inhibitor (TATI) and human chorionic gonadotropin-beta (hCGbeta) in patients with hepatocellular carcinoma. Scand J Gastroenterol. 2013;48(9):1066–1073. doi:10.3109/00365521.2013.805810.
  • Hass HG, Jobst J, Vogel U, Scheurlen M, Nehls O. Overexpression of Tumor-Associated Trypsin Inhibitor (SPINK1/TATI) in Hepatitis C-Associated Hepatocellular Carcinoma: Potential Implications for Viral Hepatocarcinogenesis. Oncol Res Treat. 2014;37(12):732–738. doi:10.1159/000369151.
  • Marshall A, Lukk M, Kutter C, et al. Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker. PLoS One. 2013;8(3):e59459. doi:10.1371/journal.pone.0059459.
  • Lee YC, Pan HW, Peng SY, et al. Overexpression of tumour-associated trypsin inhibitor (TATI) enhances tumour growth and is associated with portal vein invasion, early recurrence and a stage-independent prognostic factor of hepatocellular carcinoma. Eur J Cancer. 2007;43(4):736–744. doi:10.1016/j.ejca.2006.11.020.
  • Hai-Yan Y, Chao-Jie G, Yi F, Da-Dao J, Lu LG. Serine protease inhibitor Kazal type 1(SPINK1) downregulates E-cadherin and induces EMT of hepatoma cells to promote hepatocellular carcinoma metastasis via the MEK/ERK signaling pathway. J Dig Dis. 2017; 18(6):349–358. doi:10.1111/1751-2980.12486..
  • Ozaki N, Ohmuraya M, Hirota M, et al. Serine Protease Inhibitor Kazal Type 1 Promotes Proliferation of Pancreatic Cancer Cells through the Epidermal Growth Factor Receptor. Mol Cancer Res. 2009;7(9):1572–1581. doi:10.1158/1541-7786.MCR-08-0567.
  • Xu L, Lu C, Huang Y, et al. SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. BMB Rep. 2018;51(12):648–653. doi:10.5483/BMBRep.2018.51.12.205.
  • Shek FH, Luo R, Lam B, et al. Serine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/beta-catenin axis in hepatocellular carcinoma. Cell Oncol. 2017;40(5):443–456. doi:10.1007/s13402-017-0332-x.
  • Ateeq B, Tomlins SA, Laxman B, et al. Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med. 2011;3(72):17r–72r. doi:10.1126/scitranslmed.3001498.
  • Cui J, Hu YF, Feng XM, et al. EGFR inhibitors and autophagy in cancer treatment. Tumor Biol. 2014;35(12):11701–11709. doi:10.1007/s13277-014-2660-z.
  • Maddocks O, Athineos D, Cheung EC, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544(7650):372–376. doi:10.1038/nature22056.
  • Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–198. doi:10.1016/j.tibs.2014.02.004.
  • Bruns H, Kazanavicius D, Schultze D, et al. Glycine inhibits angiogenesis in colorectal cancer: role of endothelial cells. Amino Acids. 2016;48(11):2549–2558. doi:10.1007/s00726-016-2278-0.
  • Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–128. doi:10.1038/nrgastro.2017.119.
  • Whitcomb DC. How to think about SPINK and pancreatitis. Am J Gastroenterology. 2002;97(5):1085–1088. doi:10.1111/j.1572-0241.2002.05697.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.