611
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Targeting the PANoptosome with 3,4-Methylenedioxy-β-Nitrostyrene, Reduces PANoptosis and Protects the Kidney against Renal İschemia-Reperfusion Injury

, , , , , , , , , , , , , , , , , , & show all
Pages 1824-1835 | Received 16 Jun 2022, Accepted 17 Sep 2022, Published online: 28 Sep 2022

References

  • Yang JR, Yao FH, Zhang JG, et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol. 2014;306(1):F75–F84. doi:10.1152/ajprenal.00117.2013.
  • Jun W, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. Necroptosis in renal ischemia/reperfusion injury: a major mode of cell death? Arch Biochem Biophys. 2020;689:108433. doi:10.1016/j.abb.2020.108433.
  • Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 ınflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406.
  • Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.
  • Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237.
  • Meng H, Wu G, Zhao X, et. al. Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discov. 2021;7(1):41. doi:10.1038/s41421-021-00278-x.
  • He Y, Varadarajan S, Muñoz-Planillo R, et al. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem. 2014;289(2):1142–1150. doi:10.1074/jbc.M113.515080.
  • Messerschmitt PJ, Rettew AN, Schroeder NO, et al. Osteosarcoma phenotype ıs ınhibited by 3,4-methylenedioxy-β-nitrostyrene. Sarcoma. 2012;2012:479712. doi:10.1155/2012/479712.
  • Wang WY, Wu YC, Wu CC. Prevention of platelet glycoprotein IIb/IIIa activation by 3,4-methylenedioxy-beta-nitrostyrene, a novel tyrosine kinase inhibitor. Mol Pharmacol. 2006;70(4):1380–1389. doi:10.1124/mol.106.023986.
  • Chen IH, Chang FR, Wu YC, et al. 3,4-Methylenedioxy-β-nitrostyrene inhibits adhesion and migration of human triple-negative breast cancer cells by suppressing β1 integrin function and surface protein disulfide isomerase. Biochimie. 2015;110:81–92. doi:10.1016/j.biochi.2015.01.006.
  • Xiao M, Li L, Li C, et al. 3,4-methylenedioxy-β-nitrostyrene ameliorates experimental burn wound progression by ınhibiting the nlrp3 ınflammasome activation. Plast Reconstr Surg. 2016;137(3):566e–575e. doi:10.1097/01.prs.0000479972.06934.83.
  • Chatterjee PK, Patel NS, Kvale EO, et al. The tyrosine kinase inhibitor tyrphostin AG126 reduces renal ischemia/reperfusion injury in the rat. Kidney Int. 2003;64(5):1605–1619. doi:10.1046/j.1523-1755.2003.00254.x.
  • Uysal E, Dokur M, Altınay S, et. al. Investigation of the effect of milrinone on renal damage in an experimental non-heart beating donor model. J Invest Surg. 2018;31(5):402–411. doi:10.1080/08941939.2017.1343880.
  • Hsu SM, Raine L, Fanger H. The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol. 1981;75(6):816–821. doi:10.1093/ajcp/75.6.816.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–278. doi:10.1016/0003-2697(78)90342-1.
  • McCord JM, Fridovich I. Superoxide dysmutase. An enzymic function for erythrocuprein. J Biol Chem. 1969;244(22):6049–6055. doi:10.1016/S0021-9258(18)63504-5.
  • Luck H. Catalase. In: Begmeyer HU (ed.) Methods of enzymatic analysis. 2nd ed. New York: Academic Press/Verlag Chemie; 1963: 885–94.
  • Lawrence RA, Burk RF. GSH-Px activity in rat liver. Biochem Biophys Res Commun. 1976;71(4):952–958. doi:10.1016/0006-291X(76)90747-6.
  • Gupta RC. 32P-postlabelling analysis of bulky aromatic adducts. IARC Sci Publ. 1993;(124):11–23.
  • Adachi S, Zeisig M, Möller L. Improvements in the analytical method for 8-hydroxydeoxyguanosine in nuclear DNA. Carcinogenesis. 1995;16(2):253–258. doi:10.1093/carcin/16.2.253.
  • Shibayama S, Fujii SI, Inagaki K, et. al. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification. J Chromatogr A. 2016;1468:109–115. doi:10.1016/j.chroma.2016.09.031.
  • Morgil G, Cok I. Development and validation of a fast and simple LC-ESI MS/MS method for quantitative analysis 8-hydroxyl-2′-deoxyguanosine (8-OHdG) in human urine. Fabad J. Pharm. Sci. 2020;45(2):125–134.
  • Shen B, Mei M, Pu Y, et. al. Necrostatin-1 attenuates renal ıschemia and reperfusion ınjury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 signaling. Mol Ther Nucleic Acids. 2019;17:701–713. doi:10.1016/j.omtn.2019.06.025.
  • Fawzy MA, Maher SA, El-Rehany MA, et. al. Vincamine modulates the effect of pantoprazole in renal ıschemia/reperfusion ınjury by attenuating MAPK and apoptosis signaling pathways. Molecules. 2022;27(4):1383. doi:10.3390/molecules27041383.
  • Pang Y, Zhang PC, Lu RR, et. al. Andrade-oliveira salvianolic acid B modulates Caspase-1-mediated pyroptosis in renal ıschemia-reperfusion ınjury via Nrf2 pathway. Front Pharmacol. 2020;11:541426.
  • Karimi Z, SoukhakLari R, Rahimi-Jaberi K, et. al. Nanomicellar curcuminoids attenuates renal ischemia/reperfusion injury in rat through prevention of apoptosis and downregulation of MAPKs pathways. Mol Biol Rep. 2021;48(2):1735–1743. doi:10.1007/s11033-021-06214-2.
  • Markó L, Vigolo E, Hinze C, et al. Tubular epithelial NF-κB activity regulates ıschemic AKI. J Am Soc Nephrol. 2016;27(9):2658–2669. doi:10.1681/ASN.2015070748.
  • Perry DK, Smyth MJ, Stennicke HR, et. al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem. 1997;272(30):18530–18533. doi:10.1074/jbc.272.30.18530.
  • Place DE, Lee S, Kanneganti TD. PANoptosis in microbial infection. Curr Opin Microbiol. 2021;59:42–49. doi:10.1016/j.mib.2020.07.012.
  • Li M, Ning J, Huang H, Jiang S, Zhuo D. Allicin protects against renal ischemia-reperfusion injury by attenuating oxidative stress and apoptosis. Int Urol Nephrol. 2022;54(7):1761–1768. doi:10.1007/s11255-021-03014-2.
  • Meersch M, Schmidt C, Zarbock A. Perioperative acute kidney ınjury: an under-recognized problem. Anesth Analg. 2017;125(4):1223–1232. doi:10.1213/ANE.0000000000002369.
  • Zheng Y, Zhang Y, Zheng Y, et al. Carnosol protects against renal ischemia-reperfusion injury in rats. Exp Anim. 2018;67(4):545–553. doi:10.1538/expanim.18-0067.
  • Kang Y, Li Y, Wen H, et al. Prevention of renal ischemia and reperfusion injury by penehyclidine hydrochloride through autophagy activation. Mol Med Rep. 2020;21(5):2182–2192.
  • Tajima T, Yoshifuji A, Matsui A, et. al. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int. 2019;95(5):1120–1137. doi:10.1016/j.kint.2018.11.034.
  • Zhang J, Huang L, Shi X, et. al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY). 2020;12(23):24270–24287. doi:10.18632/aging.202143.
  • Huang L, Li X, Liu Y, et. al. Curcumin alleviates cerebral ıschemia-reperfusion ınjury by ınhibiting NLRP1-dependent neuronal pyroptosis. Curr Neurovasc Res. 2021;18(2):189–196. doi:10.2174/1567202618666210607150140.
  • Zhu Y, Zhu WP, Li W, et al. Implications of EET in renal ischemia/reperfusion by regulating NLRP3 expression and pyroptosis. Zhonghua Yi Xue Za Zhi. 2020;100(10):779–784.
  • Miao N, Yin F, Xie H, et al. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int. 2019;96(5):1105–1120. doi:10.1016/j.kint.2019.04.035.
  • Wu W, Liu D, Zhao Y, et al. Cholecalciferol pretreatment ameliorates ischemia/reperfusion-induced acute kidney injury through inhibiting ROS production, NF-κB pathway and pyroptosis. Acta Histochem. 2022;124(4):151875. doi:10.1016/j.acthis.2022.151875.
  • Choi ME, Price DR, Ryter SW, et. al. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019;4(15):e128834. doi:10.1172/jci.insight.128834.
  • Liu W, Chen B, Wang Y, et. al. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci U S A. 2018;115(7):E1475–E1484.
  • Chen H, Fang Y, Wu J, et. al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 2018;9(9):878. doi:10.1038/s41419-018-0936-8.
  • Li C, Chen QY, He Y, et al. Discovery of a chalcone derivative as potent necroptosis inhibitor for the treatment of acute kidney injury. Clin Exp Pharmacol Physiol. 2022;49(8):824–835. doi:10.1111/1440-1681.13670.
  • Yang Q, Zang HM, Xing T, et al. Gypenoside XLIX protects against acute kidney injury by suppressing IGFBP7/IGF1R-mediated programmed cell death and inflammation. Phytomedicine. 2021;85:153541. doi:10.1016/j.phymed.2021.153541.
  • Martens S, Jeong M, Tonnus W, et. al. Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death Dis. 2017;8(6):e2904. doi:10.1038/cddis.2017.298.
  • Anaya-Prado R, Toledo-Pereyra LH. The molecular events underlying ischemia/reperfusion injury. Transplant Proc. 2002;34(7):2518–2519. doi:10.1016/s0041-1345(02)03471-1.
  • Kataoka T. Study of antioxidative effects and anti-infl ammatory effects in mice due to low-dose X-irradiation or radon inhalation. J Radiat Res. 2013;54(4):587–596. doi:10.1093/jrr/rrs141.
  • Bozlu M, Coşkun B, Çayan S, et al. Inhibition of poly (adenosine diphosphata-ribose) polymerase decreases long-term histologic damage intesticular ischemia reperfusion injury. Urology. 2004;63(4):791–795. doi:10.1016/j.urology.2003.10.062.
  • Li Y, Hou D, Chen X, et. al. Hydralazine protects against renal ischemia-reperfusion injury in rats. Eur J Pharmacol. 2019;843:199–209. doi:10.1016/j.ejphar.2018.11.015.
  • Perez-Meseguer J, Torres-González L, Gutiérrez-González JA, et al. Antiinfl ammatory and nephroprotective activity of Juglans mollis against renal ischemia-reperfusion damage in a Wistar rat model. BMC Complement Altern Med. 2019;19(1):186. doi:10.1186/s12906-019-2604-7.
  • Aboutaleb N, Jamali H, Abolhasani M, et al. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of infl ammation, oxidative stress and apoptosis. Biomed Pharmacother. 2019;110:9–19. doi:10.1016/j.biopha.2018.11.045.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2’-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(2):120–139. doi:10.1080/10590500902885684.
  • Yan W, Ren D, Feng X, et. al. Neuroprotective and anti-ınflammatory effect of pterostilbene against cerebral ıschemia/reperfusion ınjury via suppression of COX-2. Front Pharmacol. 2021;12:770329.
  • Nakayama Y, Ueda S, Yamagishi S, et. al. Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int. 2014;85(3):570–578. doi:10.1038/ki.2013.398.
  • Hamilton ML, Guo Z, Fuller CD, et al. A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res. 2001;29(10):2117–2126. doi:10.1093/nar/29.10.2117.
  • Lee SO, Chun SY, Lee E, et. al. Renal protective effect of beluga lentil pretreatment for ıschemia-reperfusion ınjury. Biomed Res Int. 2021;2021:6890679. doi:10.1155/2021/6890679.
  • Yun Y, Duan WG, Chen P, et. al. Ischemic postconditioning modified renal oxidative stress and lipid peroxidation caused by ischemic reperfusion injury in rats. Transplant Proc. 2009;41(9):3597–3602. doi:10.1016/j.transproceed.2009.06.203.
  • Kang R, Zeng L, Zhu S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24(1):97–108.e4. doi:10.1016/j.chom.2018.05.009.
  • Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-ınduced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.
  • Jiang GP, Liao YJ, Huang LL, et al. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury. Mol Med Rep. 2020;23(1):63. doi:10.3892/mmr.2020.11704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.