1,090
Views
0
CrossRef citations to date
0
Altmetric
Original Research

S100 Calcium-Binding Protein A8 Functions as a Tumor-Promoting Factor in Renal Cell Carcinoma via Activating NF-κB Signaling Pathway

, , , , &
Article: 2241081 | Received 08 Feb 2023, Accepted 21 Jul 2023, Published online: 01 Aug 2023

References

  • Makino T, Kadomoto S, Izumi K, Mizokami A. Epidemiology and prevention of renal cell carcinoma. Cancers (Basel). 2022;14(16):4059. doi:https://doi.org/10.3390/cancers14164059.
  • Goebell PJ, Staehler M, Muller L, et al. Changes in treatment reality and survival of patients with advanced clear cell renal cell carcinoma - analyses from the german clinical RCC-registry. Clin Genitourin Cancer. 2018;16(6):1–9. doi:https://doi.org/10.1016/j.clgc.2018.06.006.
  • Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. Adv Protein Chem Struct Biol. 2022;131:85–164. doi:https://doi.org/10.1016/bs.apcsb.2022.05.002.
  • Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61(1):124–135. doi:https://doi.org/10.1373/clinchem.2014.224360.
  • Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006;72(11):1622–1631. doi:https://doi.org/10.1016/j.bcp.2006.05.017.
  • Yong HY, Moon A. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells. Arch Pharm Res. 2007;30(1):75–81. doi:https://doi.org/10.1007/BF02977781.
  • Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 2006;312(2):184–197. doi:https://doi.org/10.1016/j.yexcr.2005.10.013.
  • Stulik J, Osterreicher J, Koupilova K, et al. The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass. Electrophoresis. 1999;20(4–5):1047–1054. doi:https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5 < 1047::AID-ELPS1047 > 3.0.CO;2-E.
  • Sumardika IW, Chen Y, Tomonobu N, et al. Neuroplastin-beta mediates S100A8/A9-induced lung cancer disseminative progression. Mol Carcinog. 2019;58(6):980–995. doi:https://doi.org/10.1002/mc.22987.
  • Reeb AN, Li W, Sewell W, et al. S100A8 is a novel therapeutic target for anaplastic thyroid carcinoma. J Clin Endocrinol Metab. 2015;100(2):E232–42. doi:https://doi.org/10.1210/jc.2014-2988.
  • An HJ, Koh HM, Song DH. S100A8 expression may have a prognostic value in CCRCC reflecting TNM staging and fuhrman nuclear grade. Anticancer Res. 2019;39(9):4681–4685. doi:https://doi.org/10.21873/anticanres.13650.
  • Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–771. doi:https://doi.org/10.1038/nrc3611.
  • Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–466. doi:https://doi.org/10.1038/nature02924.
  • Zou J, Yang Y, Yang Y, Liu X. Polydatin suppresses proliferation and metastasis of non-small cell lung cancer cells by inhibiting NLRP3 inflammasome activation via NF-kappaB pathway. Biomed Pharmacother. 2018;108:130–136. doi:https://doi.org/10.1016/j.biopha.2018.09.051.
  • Nedjadi T, Evans A, Sheikh A, et al. S100A8 and S100A9 proteins form part of a paracrine feedback loop between pancreatic cancer cells and monocytes. BMC Cancer. 2018;18(1):1255. doi:https://doi.org/10.1186/s12885-018-5161-4.
  • Kumar A, Kumari N, Gupta V, Prasad R. Renal cell carcinoma: Molecular aspects. Indian J Clin Biochem. 2018;33(3):246–254. doi:https://doi.org/10.1007/s12291-017-0713-y.
  • Shah A, Patel C. A concise review of inflammatory biomarkers targeted cancer therapy. Folia Med (Plovdiv). 2022;64(4):572–580. doi:https://doi.org/10.3897/folmed.64.e68365.
  • Park J, Schwarzbauer JE. Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition. Oncogene. 2014;33(13):1649–1657. doi:https://doi.org/10.1038/onc.2013.118.
  • Shen J, Wang R, Chen Y, et al. Comprehensive analysis of expression profiles and prognosis of TRIM genes in human kidney clear cell carcinoma. Aging (Albany NY). 2022;14(10):4606–4617. doi:https://doi.org/10.18632/aging.204102.
  • Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15(2):96–109. doi:https://doi.org/10.1038/nrc3893.
  • Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396(2):201–214. doi:https://doi.org/10.1042/BJ20060195.
  • Sood A, Mishra D, Kharbanda OP, et al. Role of S100 A7 as a diagnostic biomarker in oral potentially malignant disorders and oral cancer. J Oral Maxillofac Pathol. 2022;26(2):166–172. doi:https://doi.org/10.4103/jomfp.jomfp_402_20.
  • Zhong C, Niu Y, Liu W, et al. S100A9 Derived from chemoembolization-induced hypoxia governs mitochondrial function in hepatocellular carcinoma progression. Adv Sci (Weinh). 2022;9(30):e2202206. doi:https://doi.org/10.1002/advs.202202206.
  • Wang H, Mao X, Ye L, Cheng H, Dai X. The role of the S100 protein family in glioma. J Cancer. 2022;13(10):3022–3030. doi:https://doi.org/10.7150/jca.73365.
  • Xiong J, Wang T, Tang H, Lv Z, Liang P. Circular RNA circMAN2B2 facilitates glioma progression by regulating the miR-1205/S100A8 axis. J Cell Physiol. 2019;234(12):22996–23004. doi:https://doi.org/10.1002/jcp.28860.
  • Wen L, Ding Y, Chen X, et al. Influences of S100A8 and S100A9 on proliferation of nasopharyngeal carcinoma cells through PI3K/Akt signaling pathway. Biomed Res Int. 2021;2021:9917365. doi:https://doi.org/10.1155/2021/9917365.
  • Wei W, Zhang Y, Song Q, et al. Transmissible ER stress between macrophages and tumor cells configures tumor microenvironment. Cell Mol Life Sci. 2022;79(8):403. doi:https://doi.org/10.1007/s00018-022-04413-z.
  • Pikarsky E, Ben-Neriah Y. NF-kappaB inhibition: a double-edged sword in cancer? Eur J Cancer. 2006;42(6):779–784. doi:https://doi.org/10.1016/j.ejca.2006.01.011.
  • Li CH, Ku MC, Lee KC, et al. Magnolol suppresses ERK/NF-kappaB signaling and triggers apoptosis through extrinsic/intrinsic pathways in osteosarcoma. Anticancer Res. 2022;42(9):4403–4410. doi:https://doi.org/10.21873/anticanres.15940.
  • Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine inhibition of TNF-alpha-induced CCL2, IKBKE/NF-kappaB/ERK1/2 signaling pathway, and cell migration in human triple-negative breast cancer cells. Int J Mol Sci. 2022;23(15):8329. doi:https://doi.org/10.3390/ijms23158329.
  • Saber S, Ghanim AMH, El-Ahwany E, El-Kader EMA. Novel complementary antitumour effects of celastrol and metformin by targeting IkappaBkappaB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis. Cancer Chemother Pharmacol. 2020;85(2):331–343. doi:https://doi.org/10.1007/s00280-020-04033-z.
  • Aghelan Z, Karima S, Khazaie H, et al. Interleukin-1alpha and tumor necrosis factor alpha as an inducer for reactive-oxygen-species-mediated NOD-like receptor protein 1/NOD-like receptor protein 3 inflammasome activation in mononuclear blood cells from individuals with chronic insomnia disorder. Euro J of Neurology. 2022;29(12):3647–3657. doi:https://doi.org/10.1111/ene.15540.
  • Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141–1160. doi:https://doi.org/10.1038/s41423-021-00670-3.
  • Papafragkos I, Grigoriou M, Boon L, Kloetgen A, Hatzioannou A, Verginis P. Ablation of NLRP3 inflammasome rewires MDSC function and promotes tumor regression. Front Immunol. 2022;13:889075. doi:https://doi.org/10.3389/fimmu.2022.889075.
  • Pan S, Hu Y, Hu M, et al. S100A8 facilitates cholangiocarcinoma metastasis via upregulation of VEGF through TLR4/NF‑kappaB pathway activation. Int J Oncol. 2020;56(1):101–112. doi:https://doi.org/10.3892/ijo.2019.4907.
  • Silveira AAA, Mahon OR, Cunningham CC, et al. S100A8 acts as an autocrine priming signal for heme-induced human Mvarphi pro-inflammatory responses in hemolytic inflammation. J Leukoc Biol. 2019;106(1):35–43. doi:https://doi.org/10.1002/JLB.3MIA1118-418RR.
  • Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel). 2018;18(10):3249. doi:https://doi.org/10.3390/s18103249.
  • Hu W, Tao Z, Zhou Q, et al. Effects of S100 calcium-binding protein A8 (S100A8) and S100 calcium-binding protein A9 (S100A9) on matrix metalloproteinase (MMP) expression in nasopharyngeal carcinoma CNE-2 cells. Transl Cancer Res. 2021;10(4):1874–1884. doi:https://doi.org/10.21037/tcr-21-441.
  • Ren P, Wu D, Appel R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J Am Heart Assoc. 2020;9(7):e014044. doi:https://doi.org/10.1161/JAHA.119.014044.