Publication Cover
High Pressure Research
An International Journal
Volume 34, 2014 - Issue 1
432
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Compression of lithium fluoride to 92 GPa

, , , , , & show all
Pages 39-48 | Received 03 Sep 2013, Accepted 22 Dec 2013, Published online: 05 Feb 2014

References

  • Vaidya SN, Kennedy GC. Compressibility of 27 halides to 45 kbar. J Phys Chem Solids. 1971;32:951–964. doi: 10.1016/S0022-3697(71)80340-2
  • Yagi T. Experimental determination of thermal expansivity of several alkali halides at high pressures. J Phys Chem Solids. 1978;39:563–571. doi: 10.1016/0022-3697(78)90037-9
  • Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J Geophys Res. 1978;83:1257–1268. doi: 10.1029/JB083iB03p01257
  • Birch F. Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain. J Geophys Res. 1986;91:4949–4954. doi: 10.1029/JB091iB05p04949
  • Bassett WA, Takahashi T, Mao HK, Weaver JS. Pressure-induced phase transformation in NaCl. J Appl Phys. 1968;39:319–325. doi: 10.1063/1.1655752
  • Boehler R, Ross M, Boercker DB. Melting of LiF and NaCl to 1 Mbar: systematics of ionic solids at extreme conditions. Phys Rev Lett. 1997;78:4589–4592. doi: 10.1103/PhysRevLett.78.4589
  • Hofmeister AM. IR spectroscopy of alkali halides at very high pressures: calculation of equations of state and of the response of bulk moduli to the B1–B2 phase transition. Phys Rev B. 1997;56:5835–5855. doi: 10.1103/PhysRevB.56.5835
  • Decker DL. High-pressure equation of state for NaCl, KCl, and CsCl. J Appl Phys. 1971;42:3239–3244. doi: 10.1063/1.1660714
  • Cohen AJ, Gordon RG. Theory of the lattice energy, equilibrium structure, elastic constants, and pressure-induced phase transitions in alkali-halide crystals. Phys Rev B. 1975;12:3228–3241. doi: 10.1103/PhysRevB.12.3228
  • Boyer LL. First-principles equation-of-state calculations for alkali halides. Phys Rev B. 1981;23:3673–3685. doi: 10.1103/PhysRevB.23.3673
  • Hemley RJ, Gordon RG. Theoretical study of solid NaF and NaCl at high pressures and temperatures. J Geophys Res. 1985;90:7803–7813. doi: 10.1029/JB090iB09p07803
  • Recio JM, Pendás AM, Francisco E, Flórez M, Luaña V. Low- and high-pressure ab initio equations of state for the alkali chlorides. Phys Rev B. 1993;48:5891–5901. doi: 10.1103/PhysRevB.48.5891
  • Flórez M, Recio JM, Francisco E, Blanco MA, Pendás AM. First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys Rev B. 2002;66:144112. doi: 10.1103/PhysRevB.66.144112
  • Sun Z-H, Dong J, Xia Y-W. First-principles calculations of the structural, electronic, and optical properties of LiF up to 300 GPa. Phys B Condens Matter. 2011;406:3660–3665. doi: 10.1016/j.physb.2011.06.066
  • Smirnov NA. Ab initio calculations of the thermodynamic properties of LiF crystal. Phys Rev B. 2011;83:014109. doi: 10.1103/PhysRevB.83.014109
  • Caine EJ, Miller SD. Optical data storage in LiF using electron beam encoding. J Vac Sci Technol B. 1998;16:3232–3236. doi: 10.1116/1.590357
  • Hicks DG, Celliers PM, Collins GW, Eggert JH, Moon SJ. Shock-induced transformation of and LiF into semiconducting liquids. Phys Rev Lett. 2003;91:035502. doi: 10.1103/PhysRevLett.91.035502
  • Rigg PA, Gupta YM. Time-resolved X-ray diffraction measurements and analysis to investigate shocked lithium fluoride crystals. J Appl Phys. 2003;93:3291–3298. doi: 10.1063/1.1556197
  • Wise JL, Chhabildas LC. Laser interferometer measurements of refractive index in shock-compressed materials. In: Gupta YM, editor. Shock waves in condensed matter. New York: Plenum; 1986. p. 441–454.
  • Ao T, Knudson MD, Asay JR, Davis J-P. Strength of lithium fluoride under shockless compression to 114 GPa. J Appl Phys. 2009;106:103507. doi: 10.1063/1.3259387
  • Fratanduono DE, Boehly TR, Barrios MA, Meyerhofer DD, Eggert JH, Smith RF, Hicks DG, Celliers PM, Braun DG, Collins GW. Refractive index of lithium fluoride ramp compressed to 800 GPa. J Appl Phys. 2011;109:123521. doi: 10.1063/1.3599884
  • Liu J, Dubrovinsky L, Boffa Ballaran T, Crichton W. Equation of state and thermal expansivity of LiF and NaF. High Press Res. 2007;27:483–489. doi: 10.1080/08957950701684690
  • Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties: a handbook. Cambridge (MA): MIT Press; 1971.
  • Every AG, McCurdy AK. The elastic constants of crystals. In: Nelson DF, editor. Landolt-Börnstein tables, III/29, p. 1–634. Berlin: Springer-Verlag; 1992. p. 743.
  • Miller RA, Smith CS. Pressure derivatives of the elastic constants of LiF and NaF. J Phys Chem Solids. 1964;25:1279–1292. doi: 10.1016/0022-3697(64)90043-5
  • Drabble JR, Strathen REB. The third-order elastic constants of potassium chloride, sodium chloride and lithium fluoride. Proc Phys Soc. 1967;92:1090–1095. doi: 10.1088/0370-1328/92/4/333
  • Kim KY, Chhabildas LC, Ruoff AL. Isothermal equations of state for lithium fluoride. J Appl Phys. 1976;47:2862–2866. doi: 10.1063/1.323062
  • Boehler R, Kennedy GC. Thermal expansion of LiF at high pressures. J Phys Chem Solids. 1980;41:1019–1022. doi: 10.1016/0022-3697(80)90053-0
  • Van Thiel M, editor. Compendium of shock wave data. Livermore: Lawrence Livermore Laboratory Report; 1977 (UCRL-50108).
  • Marsh SP, editor. LASL shock Hugoniot data. Berkeley: University of California Press; 1980.
  • Rivers M, Prakapenka V, Kubo A, Pullins C, Holl C, Jacobsen S. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the advanced photon source. High Press Res. 2008;28:273–292. doi: 10.1080/08957950802333593
  • Hammersley A, Svensson S, Hanfland M, Fitch A, Häusermann D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res. 1996;14:235–248. doi: 10.1080/08957959608201408
  • Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa. Phys Rev B. 2004;70: 094112. doi: 10.1103/PhysRevB.70.094112
  • Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao H. Quasi-hydrostatic compression of magnesium oxide to 52 GPa-implications for the pressure-volume-temperature equation of state. J Geophys Res. 2001;106:515–528. doi: 10.1029/2000JB900318
  • Takemura K, Dewaele A. Isothermal equation of state for gold with a He-pressure medium. Phys Rev B. 2008;78:104119. doi: 10.1103/PhysRevB.78.104119
  • Steinberg DJ. Equation of state and strength properties of selected materials. Livermore: Lawrence Livermore National Laboratory Report; 1996 (UCRL-MA-106439).
  • Anderson OL, Isaak DG, Yamamoto S. Anharmonicity and the equation of state for gold. J Appl Phys. 1989;65:1534–1543. doi: 10.1063/1.342969
  • Ruoff AL. Linear shock-velocity-particle-velocity relationship. J Appl Phys. 1967;38:4976–4980. doi: 10.1063/1.1709263
  • Besson JM, Pinceaux JP. Melting of helium at room temperature and high pressure. Science. 1979;206:1073–1075. doi: 10.1126/science.206.4422.1073
  • Singh AK. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys. 1993;73:4278–4286. doi: 10.1063/1.352809
  • Weidner DJ, Wang Y, Meng Y, Vaughan MT. Deviatoric strength measurements at high pressure and temperature. AIP Conference Proceedings; 1994;309: 1025–1028.
  • Takemura K. Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys. 2001;89:662–668. doi: 10.1063/1.1328410
  • Klotz S, Chervin J-C, Munsch P, Le Marchand G. Hydrostatic limits of 11 pressure-transmitting media. J Phys Appl Phys. 2009;42:075413. doi: 10.1088/0022-3727/42/7/075413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.