152
Views
1
CrossRef citations to date
0
Altmetric
Articles

Pressure-induced valence change toward the QCP in 4f-electron compounds determined by X-ray absorption spectroscopy

, , &
Pages 419-428 | Received 02 May 2016, Accepted 04 Jun 2016, Published online: 28 Jul 2016

References

  • Löhneysen Hv, Rosch A, Vojta M, et al. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys. 2007;79:1015–1075. doi: 10.1103/RevModPhys.79.1015
  • Flouquet J, Barla A, Boursier R, et al. Kondo engineering: from single kondo impurity to the kondo lattice. J Phys Soc Jpn. 2005;74(1):178–185. doi: 10.1143/JPSJ.74.178
  • Gegenwart P, Si Q, Steglich F. Quantum criticality in heavy-fermion metals. Nat Phys. 2008;4(3):186–197. doi: 10.1038/nphys892
  • Moriya T, Takimoto T. Anomalous properties around magnetic instability in heavy electron systems. J Phys Soc Jpn. 1995;64(3):960–969. doi: 10.1143/JPSJ.64.960
  • Hertz JA. Quantum critical phenomena. Phys Rev B. 1976;14:1165–1184. doi: 10.1103/PhysRevB.14.1165
  • Millis AJ. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys Rev B. 1993;48:7183–7196. doi: 10.1103/PhysRevB.48.7183
  • Gegenwart P, Custers J, Geibel C, et al. Magnetic-field induced quantum critical point in YbRh2Si2. Phys Rev Lett. 2002;89: 056402. doi: 10.1103/PhysRevLett.89.056402
  • Matsumoto Y, Nakatsuji S, Kuga K, et al. Quantum criticality without tuning in the mixed valence compound-YbAlB4. Science. 2011;331(6015):316–319. doi: 10.1126/science.1197531
  • Deguchi K, Matsukawa S, Sato NK, et al. Quantum critical state in a magnetic quasicrystal. Nat Mater. 2012;11(12):1013–1016.
  • Si Q, Rabello S, Ingersent K et al. Locally critical quantum phase transitions in strongly correlated metals. Nature. 2001;413(6858):804–808. doi: 10.1038/35101507
  • Coleman P, Pépin C, Si Q, et al. How do fermi liquids get heavy and die? J Phys Condens Matter. 2001;13(35):R723–R738. doi: 10.1088/0953-8984/13/35/202
  • Misawa T, Yamaji Y, Imada M. Spin fluctuation theory for quantum tricritical point arising in proximity to first-order phase transitions: applications to heavy-fermion systems, YbRh2Si2, CeRu2Si2, and -YbAlB4. J Phys Soc Jpn. 2009;78(8): 084707. doi: 10.1143/JPSJ.78.084707
  • Watanabe S, Miyake K. Quantum valence criticality as an origin of unconventional critical phenomena. Phys Rev Lett. 2010;105: 186403.
  • Fernandez-Pa nella A, Balédent V, Braithwaite D, et al. Valence instability of YbCu2Si2 through its magnetic quantum critical point. Phys Rev B. 2012;86: 125104.
  • Sato H, Yamaoka H, Utsumi Y, et al. Pressure-induced valence change of YbNiGe3 investigated by resonant X-ray emission spectroscopy at the Yb L3 edge. Phys Rev B. 2014;89: 045112.
  • Kumar RS, Svane A, Vaitheeswaran G, et al. Effect of pressure on valence and structural properties of YbFe2Ge2 heavy fermion compound—a combined inelastic x-ray spectroscopy, x-ray diffraction, and theoretical investigation. Inorg Chem. 2015;54(21):10250–10255. doi: 10.1021/acs.inorgchem.5b01534
  • Jiang WB, Yang L, Guo CY, et al. Crossover from a heavy fermion to intermediate valence state in noncentrosymmetric Yb2Ni12(P,As)7. Scient Rep. 2015;5: 17608.
  • Yamaoka H, Jarrige I, Tsujii N, et al. Temperature and pressure-induced valence transitions in YbNi2Ge2 and YbPd2Si2. Phys Rev B. 2010;82: 035111.
  • Matsubayashi K, Hirayama T, Yamashita T, et al. Pressure-induced valence crossover and novel metamagnetic behavior near the antiferromagnetic quantum phase transition of YbNi3Ga9. Phys Rev Lett. 2015;114: 086401. doi: 10.1103/PhysRevLett.114.086401
  • Matsubayashi K, Munakata K, Isobe M, et al. Pressure-induced changes in the magnetic and valence state of EuFe2As2. Phys Rev B. 2011;84: 024502. doi: 10.1103/PhysRevB.84.024502
  • Kawamura N, Ishimatsu N, Maruyama H. X-ray magnetic spectroscopy at high pressure: performance of SPring-8 BL39XU. J Synchrotron Radiat. 2009;16(6):730–736. doi: 10.1107/S0909049509034700
  • Tateiwa N, Haga Y. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev Scient Instrum. 2009;80(12): 123901. doi: 10.1063/1.3265992
  • Irifune T, Kurio A, Sakamoto S, et al. Correction: ultrahard polycrystalline diamond from graphite. Nature (London). 2003;421(6925):806–806. doi: 10.1038/421806b
  • Ishimatsu N, Matsumoto K, Maruyama H, et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J Synchrotron Radiat. 2012;19(5):768–772. doi: 10.1107/S0909049512026088
  • Knebel G, Braithwaite D, Lapertot G, et al. Magnetically ordered kondo lattice in YbNi2Ge2 at high pressure. J Phys Condens Matter. 2001;13(48):10935–10946. doi: 10.1088/0953-8984/13/48/318
  • Winkelmann H, Abd-Elmeguid MM, Micklitz H, et al. Direct observation of a magnetically ordered state in YbCu2Si2 under high pressure. Phys Rev B. 1999;60:3324–3330. doi: 10.1103/PhysRevB.60.3324
  • Saiga Y, Matsubayashi K, Fujiwara T, et al. Pressure-induced magnetic transition in a single crystal of YbCo2Zn20. J Phys Soc Jpn. 2008;77(5): 053710. doi: 10.1143/JPSJ.77.053710
  • Honda F, Taga Y, Hirose Y, et al. Novel electronic states of heavy fermion compound YbCo2Zn20. J Phys Soc Jpn. 2014;83(4): 044703. doi: 10.7566/JPSJ.83.044703
  • Mito T, Nakamura M, Otani M, et al. Magnetic properties of the pressure-induced ordering state in YbInCu4 investigated with NMR, magnetization, and x-ray diffraction measurements. Phys Rev B. 2007;75:134401. doi: 10.1103/PhysRevB.75.134401
  • Fernandez-Pa nella A, Braithwaite D, Salce B, et al. Ferromagnetism in YbCu2Si2 at high pressure. Phys Rev B. 2011;84:134416.
  • Tomita T, Kuga K, Uwatoko Y, et al. Strange metal without magnetic criticality. Science. 2015;349(6247):506–509. doi: 10.1126/science.1262054
  • Watanabe S, Miyake K. Roles of critical valence fluctuations in Ce- and Yb-based heavy fermion metals. J Phys: Condens Matter. 2011;23(9):094217.
  • Gladyshevskii RE, Cenzual K, Flack HD, et al. Structure of RNi3Al9 (R = Y, Gd, Dy, Er) with either ordered or partly disordered arrangement of Al-atom triangles and rare-earth-metal atoms. Acta Crystallogr Sect B. 1993;49(3):468–474. doi: 10.1107/S010876819201173X
  • Tobash PH, Jiang Y, Ronning F, et al. Synthesis, structure and physical properties of YbNi3Al9.23. J Phys: Condens Matter. 2011;23(8):086002.
  • Ohara S, Yamashita T, Mori Y, et al. Transport and magnetic properties of new heavy-fermion antiferromagnet YbNi3Al9. J Phys Conf Ser. 2011;273(1):012048.
  • Yamashita T, Miyazaki R, Aoki Y, et al. Transport, thermal, and magnetic properties of YbNi3X9 (X = Al, Ga): a newly synthesized Yb-based kondo lattice system. J Phys Soc Jpn. 2012;81(3):034705. doi: 10.1143/JPSJ.81.034705
  • Miyazaki R, Aoki Y, Higashinaka R, et al. Heavy quasiparticles formed in the ferromagnetic yb layers in the kondo helical magnet YbNi3Al9 as revealed by specific-heat measurements. Phys Rev B. 2012;86:155106.
  • Utsumi Y, Sato H, Ohara S, et al. Electronic structure of kondo lattice compounds YbNi3Ga9 (X = Al, Ga) studied by hard X-ray spectroscopy. Phys Rev B. 2012;86:115114.
  • Souza-Neto N. Interplay between valence magnetism and structure. This issue 2016.
  • Matsuda YH, Inami T, Ohwada K, et al. High-magnetic-field X-ray absorption spectroscopy of field-induced valence transition in YbInCu4. J Phys Soc Jpn. 2007;76(3): 034702. doi: 10.1143/JPSJ.76.034702
  • Nakamura T, Matsuda YH, Her JL, et al. High-magnetic-field X-ray absorption and magnetic circular dichroism spectroscopy in the mixed-valent compound YbAgCu4. J Phys Soc Jpn. 2012;81(11): 114702. doi: 10.1143/JPSJ.81.114702
  • Hiranaka Y, Nakamura A, Hedo M, et al. Heavy fermion state based on the kondo effect in EuNi2P2. J Phys Soc Jpn. 2013;82(8): 083708. doi: 10.7566/JPSJ.82.083708
  • Seiro S, Geibel C. From stable divalent to valence-fluctuating behaviour in Eu(Rh1-xIrx)2Si2 single crystals. J Phys: Condens Matter. 2011;23(37): 375601.
  • Abd-Elmeguid MM, Sauer C, Zinn W. Pressure-induced valence change of eu in Eu(Pd0.8Au0.2)2Si2: collapse of magnetic order. Phys Rev Lett. 1985;55:2467–2470. doi: 10.1103/PhysRevLett.55.2467
  • Mitsuda A, Hamano S, Araoka N, et al. Pressure-induced valence transition in antiferromagnet EuRh2Si2. J Phys Soc Jpn. 2012;81(2):023709. doi: 10.1143/JPSJ.81.023709
  • Wada H, Hundley MF, Movshovich R, et al. Pressure effect on the valence transition of EuNi2(Ge1-xSix)2. Phys Rev B. 1999;59:1141–1144. doi: 10.1103/PhysRevB.59.1141
  • Nakamura A, Okazaki T, Nakashima M, et al. Pressure-induced valence transition and heavy fermion state in Eu2Ni3Ge5 and EuRhSi3. J Phys Soc Jpn. 2015;84(5):053701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.