249
Views
17
CrossRef citations to date
0
Altmetric
Articles

Pressure dependence of the electronic structure of 4f and 3d electron systems studied by X-ray emission spectroscopy

Pages 262-274 | Received 27 Apr 2016, Accepted 15 Jun 2016, Published online: 09 Aug 2016

References

  • Rueff J-P, Shukla A. Inelastic X-ray scattering by electronic excitations under high pressure. Rev Mod Phys. 2010;82:847–896. doi: 10.1103/RevModPhys.82.847
  • Dadashev A, Pasternak MP, Rozenberg GKH, Taylor RD. Applications of perforated diamond anvils for very high-pressure research. Rev Sci Instrum. 2001;72:2633–2637. doi: 10.1063/1.1370561
  • Haskel D, Tseng YC, Lang JC, Sinogeikin S. Instrument for X-ray magnetic circular dichroism measurements at high pressures. Rev Sci Instrum. 2007;78:083904-1–083904-5. doi: 10.1063/1.2773800
  • Torchio R, Mathon O, Pascarelli S. XAS and XMCD spectroscopies to study matter at high pressure: probing the correlation between structure and magnetism in the 3d metals. Coord Chem Rev. 2014;277–278:80–94. doi: 10.1016/j.ccr.2014.02.024
  • Hämäläinen K, Siddons DP, Hasting JB, Berman LE. Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy. Phys Rev Lett. 1991;67:2850–2853. doi: 10.1103/PhysRevLett.67.2850
  • Hämäläinen K, Kao CC, Hasting JB, et al. Spin-dependent X-ray absorption of MnO and MnF2. Phys Rev B. 1992;46:14274–14277. doi: 10.1103/PhysRevB.46.14274
  • Glatzel P, Alonso-Mori R, Sokaras D, Hard X-ray photon-in/photon-out spectroscopy: instrumentation, theory and applications. In: Bokhoven J, Lamberti C, editors. X-ray absorption and X-ray emission spectroscopy: theory and applications. 1st ed. Chapter 6. Chichester: John Wiley & Sons; 2016. p. 125–153. Available from: http://www.dietmardreier.de/annot/564C42696D677C7C393738313131383834343236377C7C504446.?sq=1&title=X-Ray%20Absorption%20and%20X-Ray%20Emission%20Spectroscopy.
  • Doniach S. The Kondo lattice and weak antiferromagnetism. Phys B & C. 1977;91:231–234. doi: 10.1016/0378-4363(77)90190-5
  • Lawrence JM, Riseborough PS, Parks RD. Valence fluctuation phenomena. Rep Prog Phys. 1981;44:1–84. doi: 10.1088/0034-4885/44/1/001
  • Löhneysen Hv, Rosch A, Vojta M, Wölfle P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys. 2007;79:1015–1075. doi: 10.1103/RevModPhys.79.1015
  • Goltsev AV, Abd-Elmeguid MM. Origin of the pressure dependence of the Kondo temperature in Ce-and Yb-based heavy-fermion compounds. J Phys Condens Matter. 2005;17:S813–S821. doi: 10.1088/0953-8984/17/11/011
  • Tsutsumi K. The X-ray non-diagram lines Kβ of some compounds of the iron group. J Phys Soc Jpn. 1959;14:1696–1706. doi: 10.1143/JPSJ.14.1696
  • Tsutsumi K, Nakamori H, Ichikawa K. X-ray Mn Kβ emission spectra of manganese oxides and manganates. Phys Rev B. 1976;13:929–933. doi: 10.1103/PhysRevB.13.929
  • Vankó G, Neisius T, Molnár G, et al. Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. J Phys Chem B. 2006;110:11647–11653. doi: 10.1021/jp0615961
  • Gretarsson H, Lupascu A, Kim J, et al. Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using X-ray emission spectroscopy. Phys Rev B. 2011;84:100509-1–100509-4.
  • Gretarsson H, Saha SR, Drye T, et al. Spin-state transition in the Fe pnictides. Phys Rev Lett. 2013;110:047003-1–047003-5.
  • Lin JF, Mao ZM, Jarrige I, et al. Resonant X-ray emission study of the lower-mantle ferroperriclase at high pressures. Am Miner. 2003;74:4732–4736.
  • Lin JF, Shu J, Mao HK, Hemley RJ. Amorphous boron gasket in diamond anvil cell research. Rev Sci Instrum. 2010;95:1125–1131.
  • Mao HK, Bell PM. High-pressure physics: the 1-megabar mark on the ruby R1 static pressure scale. Science. 1976;191:851–852. doi: 10.1126/science.191.4229.851
  • Syassen K. Ruby under pressure. High Press Res. 2008;28:75–126. doi: 10.1080/08957950802235640
  • Yamaoka H, Zekko Y, Jarrige I, et al. Ruby pressure scale in a low-temperature diamond anvil cell. J Appl Phys. 2012;112:124503-1–124503-5. doi: 10.1063/1.4769305
  • Steglich FJ, Aarts J, Bredl CD, et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys Rev Lett. 1979;43:1892–1896. doi: 10.1103/PhysRevLett.43.1892
  • Thomas F, Thomasson J, Ayache C, Geibel C, Steglich F. Precise determination of the pressure dependence of Tc in the heavy-fermion superconductor CeCu2Si2. Physica (Amsterdam). 1993;186–188B:303–306. doi: 10.1016/0921-4526(93)90561-J
  • Rueff J-P, Raymond S, Taguchi M, et al. Pressure-induced valence crossover in superconducting CeCu2Si2. Phys Rev Lett. 2011;106:186405-1–186405-4. doi: 10.1103/PhysRevLett.106.186405
  • Onishi Y, Miyake K. Enhanced valence fluctuations caused by f–c Coulomb interaction in Ce-based heavy electrons: possible origin of pressure-induced enhancement of superconducting transit temperature in CeCu2Si2 and related compounds. J Phys Soc Jpn. 2000;69:3955–3964. doi: 10.1143/JPSJ.69.3955
  • Watanabe S, Miyake K. Roles of critical valence fluctuations in Ce-and Yb-based heavy fermion metals. J Phys Condens Matter. 2011;23:1–11. doi: 10.1088/0953-8984/23/9/094217
  • Yamaoka H, Tsujii N, Utsumi Y, et al. Valence transitions in the heavy-fermion compound YbCuAl as a function of temperature and pressure. Phys Rev B. 2013;87:205120-1–205120-7. doi: 10.1103/PhysRevB.87.205120
  • Yamaoka H, Ikeda Y, Jarrige I, et al. Role of valence fluctuations in the superconductivity of Ce122 compounds. Phys Rev Lett. 2014;113:086403-1–086403-6. doi: 10.1103/PhysRevLett.113.086403
  • Yamaoka H, Kotani A, Kubozono Y, et al. Charge-transfer satellite in Ce@C82 probed by resonant X-ray emission spectroscopy. J Phys Soc Jpn. 2011;80:014702-1–014702-5.
  • Yamaoka H, Jarrige I, Tsujii N, et al. Pressure and temperature dependences of the electronic structure of CeIrSi3 probed by resonant X-ray emission spectroscopy. J Phys Soc Jpn. 2011;80:124701-1–124701-7.
  • Kotani A, Yamaoka H. Final-state interaction in the L3 X-ray absorption spectra of mixed-valence Ce and Yb compounds. J Phys Soc Jpn. 2015;84:033702-1–033702-4.
  • Pham LD, Park T, Maquilon S, Thompson JD, Fisk Z. Reversible tuning of the heavy-fermion ground state in CeCoIn5. Phys Rev Lett. 2006;97:056404-1–056404-4. doi: 10.1103/PhysRevLett.97.056404
  • Gofryk K, Ronning F, Zhu J-X, et al. Electronic tuning and uniform superconductivity in CeCoIn5. Phys Rev Lett. 2012;109:186402-1–186402-5. doi: 10.1103/PhysRevLett.109.186402
  • Chen Y, Jiang WB, Guo CY, et al. Reemergent superconductivity and avoided quantum criticality in Cd-doped CeIrIn5 under pressure. Phys Rev Lett. 2015;114:146403-1–146403-5.
  • Shang T, Baumbach RE, Gofryk K, et al. CeIrIn5: Superconductivity on a magnetic instability Phys. Rev B. 2014;89:041101-1–041101-5. doi: 10.1103/PhysRevB.89.041101
  • Yashima M, Tagami N, Taniguchi S, et al. Possibility of valence-fluctuation-mediated superconductivity in Cd-doped CeIrIn5 probed by In NQR. Phys Rev Lett. 2012;109:117001-1–117001-5. doi: 10.1103/PhysRevLett.109.117001
  • Yamaoka H, Yamamoto Y, Schwier EF, et al. Pressure and temperature dependence of the Ce valence and c–f hybridization gap in CeTIn5 (T = Co, Rh, Ir) heavy-fermion superconductors. Phys Rev B. 2015;92:235110-1–235110-6.
  • Nakatsuji S, Kuga K, Machida Y, et al. Superconductivity and quantum criticality in the heavy-fermion system bold β-YbAlB4. Nat Phys. 2008;4:603–607. doi: 10.1038/nphys1002
  • Fernandez-Pañella A, Balédent V, Braithwaite D, et al. Valence instability of YbCu2Si2 through its magnetic quantum critical point. Phys Rev B. 2012;86:125104-1–125104-5. doi: 10.1103/PhysRevB.86.125104
  • Yamaoka H, Jarrige I, Tsujii N, et al. Temperature and pressure-induced valence transitions in YbNi2Ge2 and YbPd2Si2. Phys Rev B. 2010;82:035111-1–035111-10.
  • Mun ED, Bud'ko SL, Ko H, Miller GJ, Canfield PC. Physical properties and anisotropies of the RNiGe3 series (R = Y, Ce-Nd, Sm, Gd-Lu). J Magn Magn Mater. 2010;322:3527–3543. doi: 10.1016/j.jmmm.2010.06.057
  • Avila MA, Sera M, Takabatake T. YbNiSi3: an antiferromagnetic Kondo lattice with strong exchange interaction. Phys Rev B. 2004;70:100409-1–100409-4. doi: 10.1103/PhysRevB.70.100409
  • Sato H, Yamaoka H, Utsumi Y, et al. Pressure-induced valence change of YbNiGe3 investigated by resonant X-ray emission spectroscopy at the Yb L3 edge. Phys Rev B. 2014;89:045112-1–045112-8.
  • Kamihara Y, Watanabe T, Hirano M, Hosono H. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05−0.12) with Tc = 26 K. J Am Chem Soc. 2008;130:3296–3297. doi: 10.1021/ja800073m
  • Hsu F-C, Luo J-Y, Yeh K-W, et al. Superconductivity in the PbO-type structure α-FeSe. Proc Nat Acad Sci (USA). 2008;105:14262–14264. doi: 10.1073/pnas.0807325105
  • Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide KxFe2As2 (0 ≤ x ≤ 1.0). Phys Rev B. 2010;82:180520-1–180520-4.
  • Liu RH, Luo XG, Zhang M, et al. Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2-yAs2 (A = K, Rb, Cs, Tl/K, and Tl/Rb): evidence from magnetization and resistivity. Euro Phys Lett. 2011;94:27008-1–27008-5.
  • Ying TP, Chen XL, Wang G, et al. Observation of superconductivity at 30–46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci Rep. 2012;2:426-1–426-7. doi: 10.1038/srep00426
  • Dagotto E. The unexpected properties of alkali metal iron selenide superconductors. Rev Mod Phys. 2013;85:849–867. doi: 10.1103/RevModPhys.85.849
  • Sun L, Chen XJ, Guo J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature (London). 2012;483:67–69. doi: 10.1038/nature10813
  • Ying JJ, Tang LY, Struzhkin VV, et al. Tripling the critical temperature of KFe2As2 by carrier switch. 2015. Available from: arXiv:1501.00330.
  • Lifshitz IM. Anormalies of electron characteristics of a metal in the high pressure region. Sov Phys JETP. 1960;11:1130–1135. (Zh Eksp Teor Fiz 1960;38:1569–1576.).
  • Lei B, Cui JH, Xiang ZJ, et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes. Phys Rev Lett. 2016;116:077002-1–077002-5. doi: 10.1103/PhysRevLett.116.077002
  • Guterding D, Backes S, Jeschke HO, Valentí R. Origin of the superconducting state in the collapsed tetragonal phase of KFe2As2. Phys Rev B. 2015;91:140503-1–140503-6.
  • Yamamoto Y, Yamaoka H, Tanaka M, et al. Origin of pressure-induced superconducting phase in KxFe2-ySe2 studied by synchrotron X-ray diffraction and spectroscopy. Sci Rep. 2016;6:30946-1–30946-7. It will be freely available online at www.nature.com/articles/srep30946 from August 8th. doi:10.1038/srep30946
  • Ortenzi L, Gretarsson H, Kasahara S, et al. Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2As2 family of materials. Phys Rev Lett. 2015;114:047001-1–047001-6. doi: 10.1103/PhysRevLett.114.047001
  • Yu Z, Wang L, Wang L, et al. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors. Sci Rep. 2014;4:7172-1–7172-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.