Publication Cover
High Pressure Research
An International Journal
Volume 37, 2017 - Issue 3
362
Views
6
CrossRef citations to date
0
Altmetric
Articles

Pressure dependence of melting temperature and shear modulus of hcp-iron

ORCID Icon, , , &
Pages 267-277 | Received 29 Oct 2016, Accepted 24 Mar 2017, Published online: 27 Apr 2017

References

  • Ahrens TJ, Holland KG, Chen GQ. Phase diagram of iron, revised-core temperatures. Geophys Res Lett. 2002;29(7):54-1–54-4. doi: 10.1029/2001GL014350
  • Söderlind P, Moriarty JA, Wills JM. First-principles theory of iron up to earth-core pressures: structural, vibrational, and elastic properties. Phys Rev B. 1996;53:14063–14072. doi: 10.1103/PhysRevB.53.14063
  • Takahashi T, Bassett WA. High-pressure polymorph of iron. Science. 1964;145(3631):483–486. doi: 10.1126/science.145.3631.483
  • Sterrett KF, Klement W, Kennedy GC. Effect of pressure on the melting of iron. J Geophys Res. 1965;70(8):1979–1984. doi: 10.1029/JZ070i008p01979
  • Stixrude L. Structure of iron to 1 Gbar and 40,000 K. Phys Rev Lett. 2012;108:055505. doi: 10.1103/PhysRevLett.108.055505
  • Alfé D. Iron at Earth's core conditions from first principles calculations. Rev Mineral Geochem. 2010;71(1):337–354. doi: 10.2138/rmg.2010.71.16
  • Anzellini S, Dewaele A, Mezouar M, et al. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science. 2013;340(6131):464–466. doi: 10.1126/science.1233514
  • Ping Y, Coppari F, Hicks DG, et al. Solid iron compressed up to 560 GPa. Phys Rev Lett. 2013;111:065501. doi: 10.1103/PhysRevLett.111.065501
  • Errandonea D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Phys Rev B. 2013;87:054108. doi: 10.1103/PhysRevB.87.054108
  • Santamaria Prez D, Ross M, Errandonea D, et al. X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. J Chem Phys. 2009;130(12):124509.
  • Nguyen JH, Holmes NC. Melting of iron at the physical conditions of the Earth's core. Nature. 2004;427:339–342. doi: 10.1038/nature02248
  • Pozzo M, Alfè D. Melting curve of face-centered-cubic nickel from first-principles calculations. Phys Rev B. 2013;88:024111. doi: 10.1103/PhysRevB.88.024111
  • Belonoshko AB, Burakovsky L, Chen SP, et al. Molybdenum at high pressure and temperature: melting from another solid phase. Phys Rev Lett. 2008;100:135701. doi: 10.1103/PhysRevLett.100.135701
  • Ashcroft NW, Mermin ND. Solid state physics. 1st ed. Pacific Grove (CA): Cengage Learning; 1976.
  • Boehler R. Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure. Phys Rev B. 1983;27:6754–6762. doi: 10.1103/PhysRevB.27.6754
  • Hieu HK. Melting of solids under high pressure. Vacuum. 2014;109:184–186. doi: 10.1016/j.vacuum.2014.07.010
  • Graf MJ, Greeff CW, Boettger JC. High-pressure Debye-Waller and Grüneisen parameters of gold and copper. AIP Confer Proc. 2004;706(1):65–68. doi: 10.1063/1.1780185
  • Hieu HK, Ha NN. High pressure melting curves of silver, gold and copper. AIP Adv. 2013;3(11):112125. doi: 10.1063/1.4834437
  • Burakovsky L, Greeff CW, Preston DL. Analytic model of the shear modulus at all temperatures and densities. Phys Rev B. 2003;67:094107. doi: 10.1103/PhysRevB.67.094107
  • Burakovsky L, Preston DL. Analytic model of the Grüneisen parameter all densities. J Phys Chem Solids. 2004;65(8–9):1581–1587. doi: 10.1016/j.jpcs.2003.10.076
  • Hieu HK. Volume and pressure-dependent thermodynamic properties of sodium. Vacuum. 2015;120(Part A):13–16. doi: 10.1016/j.vacuum.2015.06.010
  • Hung NV, Trung NB, Kirchner B. Anharmonic correlated Debye model Debye–Waller factors. Physica B Condens Matter. 2010;405(11):2519–2525. doi: 10.1016/j.physb.2010.03.013
  • Burakovsky L, Preston DL, Silbar RR. Analysis of dislocation mechanism for melting of elements: pressure dependence. J Appl Phys. 2000;88(11):6294–6301. doi: 10.1063/1.1323535
  • Errandonea D. Improving the understanding of the melting behaviour of mo, ta, and w at extreme pressures. Phys B Condens Matter. 2005;357(3–4):356–364. doi: 10.1016/j.physb.2004.11.087
  • Lindemann F. The calculation of molecular vibration frequencies. Physik Z. 1910;11:609–612.
  • Errandonea D. The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys. 2010;108(3):033517. doi: 10.1063/1.3468149
  • Hieu HK. Systematic prediction of high-pressure melting curves of transition metals. J Appl Phys. 2014;116(16):163505. doi: 10.1063/1.4899511
  • Wang Y, Ahuja R, Johansson B. Melting of iron and other metals at Earth's core conditions: a simplified computational approach. Phys Rev B. 2001;65:014104.
  • Guinan M, Steinberg D. A simple approach to extrapolating measured polycrystalline shear moduli to very high pressure. J Phys Chem Solids. 1975;36(7-8):829. doi: 10.1016/0022-3697(75)90109-2
  • Preston DL, Wallace DC. A model of the shear modulus. Solid State Commun. 1992;81(3):277–281. doi: 10.1016/0038-1098(92)90514-A
  • Burakovsky L, Preston DL, Wang Y. Cold shear modulus and Grüneisen parameter at all densities. Solid State Commun. 2004;132(3–4):151–156. doi: 10.1016/j.ssc.2004.07.066
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809
  • Holzapfel WB. Equations of state for ideal and real solids under strong compression. Europhys Lett. 1991;16(1):67–72. doi: 10.1209/0295-5075/16/1/012
  • Cohen RE, Gülseren O, Hemley RJ. Accuracy of equation-of-state formulations. Am Mineral. 2000;85(2):338–344. doi: 10.2138/am-2000-2-312
  • Vinet P, Ferrante J, Rose JH, et al. Compressibility of solids. J Geophys Res. 1987;92(B9):9319–9325. doi: 10.1029/JB092iB09p09319
  • Anderson OL, Dubrovinsky L, Saxena SK, et al. Experimental vibrational Grüneisen ratio values for ε-iron up to 330 GPa at 300 K. Geophys Res Lett. 2001;28(2):399–402. doi: 10.1029/2000GL008544
  • Dewaele A, Loubeyre P, Occelli F, et al. Quasihydrostatic equation of state of iron above 2 Mbar. Phys Rev Lett. 2006;97:215504. doi: 10.1103/PhysRevLett.97.215504
  • Ma Y, Somayazulu M, Shen G, et al. In situ X-ray diffraction studies of iron to earth-core conditions. Phys Earth Planet Inter. 2004;143–144:455–467. doi: 10.1016/j.pepi.2003.06.005
  • Nguyen JH, Holmes NC. Melting of iron at the physical conditions of the Earth's core. Nature. 2004;427(6972):339–342. doi: 10.1038/nature02248
  • Brown JM, McQueen RG. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J Geophys Res Solid Earth. 1986;91(B7):7485–7494. doi: 10.1029/JB091iB07p07485
  • Komabayashi T, Fei Y. Internally consistent thermodynamic database for iron to the Earth's core conditions. J Geophys Res Solid Earth. 2010;115(B3):b03202. doi: 10.1029/2009JB006442
  • Shen G, Mao H-K, Hemley RJ, et al. Melting and crystal structure of iron at high pressures and temperatures. Geophys Res Lett. 1998;25(3):373–376. doi: 10.1029/97GL03776
  • Boehler R. Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature. 1993;363(6429):534–536. doi: 10.1038/363534a0
  • Boehler R, Santamaria-Perez D, Errandonea D, et al. Melting, density, and anisotropy of iron at core conditions: new X-ray measurements to 150 GPa. J Phys Conf Ser. 2008;121(2):022018. doi: 10.1088/1742-6596/121/2/022018
  • Jackson JM, Sturhahn W, Lerche M, et al. Melting of compressed iron by monitoring atomic dynamics. Earth Planet Sci Lett. 2013;362:143–150. doi: 10.1016/j.epsl.2012.11.048
  • Aquilanti G, Trapananti A, Karandikar A, et al. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa. Proc Natl Acad Sci. 2015;112(39):12042–12045. doi: 10.1073/pnas.1502363112
  • Bouchet J, Mazevet S, Morard G, et al. Ab initio equation of state of iron up to 1500 GPa. Phys Rev B. 2013;87(9):094102. doi: 10.1103/PhysRevB.87.094102
  • Williams Q, Jeanloz R, Bass J, et al. The melting curve of iron to 250 gigapascals: a constraint on the temperature at Earth's center. Science. 1987;236(4798):181–182. doi: 10.1126/science.236.4798.181
  • Alfe D, Gillan MJ, Price GD. Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth Planet Sci Lett. 2002;195(1–2):91–98. doi: 10.1016/S0012-821X(01)00568-4
  • Terasaki H, Kamada S, Sakai T, et al. Liquidus and solidus temperatures of a Fe–O–S alloy up to the pressures of the outer core: implication for the thermal structure of the Earth's core. Earth Planet Sci Lett. 2011;304(3–4):559–564. doi: 10.1016/j.epsl.2011.02.041
  • Zhang D, Jackson JM, Zhao J, et al. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures. Earth Planet Sci Lett. 2016;447:72–83. doi: 10.1016/j.epsl.2016.04.026
  • Laio A, Bernard S, Chiarotti GL, et al. Physics of iron at Earth's core conditions. Science. 2000;287(5455):1027–1030. doi: 10.1126/science.287.5455.1027
  • Alfè D. Temperature of the inner-core boundary of the earth: melting of iron at high pressure from first-principles coexistence simulations. Phys Rev B. 2009;79:060101. doi: 10.1103/PhysRevB.79.060101
  • Japel S, Schwager B, Boehler R, et al. Melting of copper and nickel at high pressure: the role of d electrons. Phys Rev Lett. 2005;95:167801. doi: 10.1103/PhysRevLett.95.167801
  • Crowhurst JC, Goncharov AF, Zaug JM. Impulsive stimulated light scattering from opaque materials at high pressure. J Phys Condens Matter. 2004;16(14):S1137–S1142. doi: 10.1088/0953-8984/16/14/023
  • Mao H-K, Shu J, Shen G, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature. 1998;396(6713):741–743. doi: 10.1038/25506
  • Merkel S, Goncharov AF, Mao H-K, et al. Raman spectroscopy of iron to 152 gigapascals: implications for Earth's inner core. Science. 2000;288(5471):1626–1629. doi: 10.1126/science.288.5471.1626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.