Publication Cover
High Pressure Research
An International Journal
Volume 37, 2017 - Issue 3
156
Views
8
CrossRef citations to date
0
Altmetric
Articles

Strengthening in high-pressure quenched Zr

, , , , , , , & show all
Pages 278-286 | Received 17 Feb 2017, Accepted 23 Apr 2017, Published online: 08 May 2017

References

  • Guo D, Li M, Shi Y, et al. Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations. Mater Sci. Eng, A. 2012;558:611–615. doi: 10.1016/j.msea.2012.08.061
  • Guo D, Zhang Z, Zhang G, et al. An extraordinary enhancement of strain hardening in fine-grained zirconium. Mater Sci Eng, A. 2014;591:167–172. doi: 10.1016/j.msea.2013.10.086
  • Li M, Guo D, Ma T. High fracture toughness in a hierarchical nanostructured zirconium. Mater Sci Eng, A. 2014;606:330–333. doi: 10.1016/j.msea.2014.03.110
  • Zhao Y, Zhang J. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition. Appl Phys Lett. 2007;91:201907. doi: 10.1063/1.2802726
  • Pérez-Prado MT, Gimazov AA, Ruano OA, et al. Bulk nanocrystalline ω-Zr by high-pressure torsion. Scr Mater. 2008;58:219–222. doi: 10.1016/j.scriptamat.2007.09.043
  • Banerjee S, Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys. Oxford: Elsevier; 2010.
  • Massih AR, Andersson T, Witt P, et al. Effect of quenching rate on the β-to-α phase transformation structure in zirconium alloy. J Nucl Mater. 2003;322:138–151. doi: 10.1016/S0022-3115(03)00323-4
  • Banerjee S, Vijayakar SJ, Krishnan R. Strength of zirconium–titanium martensites and deformation behaviour. Acta Metall. 1978;26:1815–1831. doi: 10.1016/0001-6160(78)90094-9
  • Tewari R, Srivastava D, Dey GK, et al. Microstructural evolution in zirconium based alloys. J Nucl Mater. 2008;383:153–171. doi: 10.1016/j.jnucmat.2008.08.041
  • Kakeshita T, Shimizu K. Effects of hydrostatic pressure on martensitic transformations. Mater Trans, JIM. 1997;38:668–681. doi: 10.2320/matertrans1989.38.668
  • Kakeshita T, Yamamoto T, Shimizu K, et al. Effects of static magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-Ni-Mn Alloy. Mater Trans, JIM. 1995;36:1018–1022. doi: 10.2320/matertrans1989.36.1018
  • Kakeshita T, Yoshimura Y, Shimizu K, et al. Effect of hydrostatic pressure on martensitic transformations in Cu–Al–Ni shape memory alloys. Trans Japan Instit Metals. 1988;29:781–789. doi: 10.2320/matertrans1960.29.781
  • Daróczi L, Beke D, Lexcellent C, et al. Effect of hydrostatic pressure on the martensitic transformation in CuZnAl (Mn) shape memory alloys. Scr Mater. 2000;43:691–697. doi: 10.1016/S1359-6462(00)00466-8
  • Kakeshita T, Shimizu K, Nakamichi S, et al. Effect of hydrostatic pressures on thermoelastic martensitic transformations in aged Ti–Ni and ausaged Fe–Ni–Co–Ti shape memory alloys. Mater Trans, JIM. 1992;33:1–6. doi: 10.2320/matertrans1989.33.1
  • Smith H, Berliner R, Jorgensen J, et al. Pressure effects on the martensitic transformation in metallic lithium. Phys Rev B. 1990;41:1231–1234. doi: 10.1103/PhysRevB.41.1231
  • Smith H, Berliner R, Jorgensen J, et al. Pressure effects on the martensitic transformation in metallic sodium. Phys Rev B. 1991;43:4524–4526. doi: 10.1103/PhysRevB.43.4524
  • Kang J-Y, Kim SC, Oh J-O, et al. Martensite in interstitial-free steel obtained by ultra-high pressure. Scr Mater. 2012;66:45–48. doi: 10.1016/j.scriptamat.2011.10.002
  • Zhang Y, Liu Z, Zhao Z, et al. Preparation of pure α″-phase titanium alloys with low moduli via high pressure solution treatment. J Alloys Compd. 2017;695:45–51. doi: 10.1016/j.jallcom.2016.10.053
  • Zhang J, Zhao Y, Rigg PA, et al. Impurity effects on the phase transformations and equations of state of zirconium metals. J Phys Chem Solids. 2007;68:2297–2302. doi: 10.1016/j.jpcs.2007.06.016
  • Sikka SK, Vohra YK, Chidambaram R. Omega phase in materials. Prog Mater Sci. 1982;27:245–310. doi: 10.1016/0079-6425(82)90002-0
  • Wei L, Baosheng L, Liping W, et al. Simultaneous ultrasonic and synchrotron X-ray studies on pressure induced α-ω phase transition in zirconium. J Appl Phys. 2008;104:076102-1–076102-3.
  • Todaka Y, Sasaki J, Moto T, et al. Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scr Mater. 2008;59:615–618. doi: 10.1016/j.scriptamat.2008.05.015
  • Srinivasarao B, Zhilyaev AP, Pérez-Prado MT. Orientation dependency of the alpha to omega plus beta transformation in commercially pure zirconium by high-pressure torsion. Scr Mater. 2011;65:241–244. doi: 10.1016/j.scriptamat.2011.04.017
  • Hennig RG, Trinkle DR, Bouchet J, et al. Impurities block the α to ω martensitic transformation in titanium. Nat Mater. 2005;4:129–133. doi: 10.1038/nmat1292
  • Holt RA. The beta to alpha phase transformation in zircaloy-4. J Nucl Mater. 1970;35:322–334. doi: 10.1016/0022-3115(70)90216-3
  • Carslaw HS, Jaeger JC. Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press; 1959.
  • Aaron HB, Fainstein D, Kotler GR. Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations. J Appl Phys. 1970;41:4404–4410. doi: 10.1063/1.1658474
  • Nachtrieb NH, Resing HA, Rice SA. Effect of pressure on self-diffusion in lead. J Chem Phys. 1959;31:135–138. doi: 10.1063/1.1730280
  • Nachtrieb NH, Weil JA, Catalano E, et al. Self-diffusion in solid sodium. II. The Effect of Pressure. J Chem Phys. 1952;20:1189–1194. doi: 10.1063/1.1700709
  • Varotsos P, Alexopoulos K. Calculation of diffusion coefficients at any temperature and pressure from a single measurement. I. Self diffusion. Phys Rev B. 1980;22:3130–3134. doi: 10.1103/PhysRevB.22.3130
  • Gil FJ, Ginebra MP, Manero JM, et al. Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4 V alloy. J Alloys Compd. 2001;329:142–152. doi: 10.1016/S0925-8388(01)01571-7
  • Sauer C, Luetjering G. Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties. J Mater Process Technol. 2001;117:311–317. doi: 10.1016/S0924-0136(01)00788-9
  • Catledge SA, Spencer PT, Vohra YK. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal. Appl Phys Lett. 2000;77:3568–3570. doi: 10.1063/1.1329632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.