Publication Cover
High Pressure Research
An International Journal
Volume 37, 2017 - Issue 3
193
Views
24
CrossRef citations to date
0
Altmetric
Articles

Constant electrical resistivity of Zn along the melting boundary up to 5 GPa

ORCID Icon & ORCID Icon
Pages 319-333 | Received 10 Apr 2017, Accepted 06 Jun 2017, Published online: 20 Jun 2017

References

  • Lifshitz IM. Anomalies of electron characteristics in the high pressure region. Sov Phys JETP. 1960;11(5):1130–1135.
  • Schulte O, Nikolaenko A, Holzapfel WB. Pressure–volume relations for Zn, Cd, Ga, In and TI at room temperature to 30 GPa and above. High Press Res. 1991;6(3):169–182. doi: 10.1080/08957959108203207
  • Kenichi T. Zn under pressure: a singularity in the hcp structure at c/a = 3. Phys Rev Lett. 1995;75(9):1807–1810. doi: 10.1103/PhysRevLett.75.1807
  • Kenichi T. Structural study of Zn and Cd to ultrahigh pressures. Phys Rev B. 1997;56(9):5170–5179. doi: 10.1103/PhysRevB.56.5170
  • Singh D, Papaconstantopoulos DA. Equilibrium properties of zinc. Phys Rev B. 1990;42(14):8885–8889. doi: 10.1103/PhysRevB.42.8885
  • Moriarty JA. Zero-order pseudoatoms and the generalized pseudopotential theory. Phys Rev B. 1974;10(8):3075–3091. doi: 10.1103/PhysRevB.10.3075
  • Schulte O, Holzapfel WB. Effect of pressure on the atomic volume of Zn, Cd, and Hg up to 75 GPa. Phys Rev B. 1996;53(2):569–580. doi: 10.1103/PhysRevB.53.569
  • Morgan JG, Von Dreele RB, Wochner P, et al. Inelastic neutron scattering from single crystal Zn under high pressure. Phys Rev B. 1996;54(2):812–818. doi: 10.1103/PhysRevB.54.812
  • Takemura K, Yamawaki H, Fujihisa H, et al. High-pressure powder x-ray diffraction experiments on Zn at low temperature. J Phys: Condens Matter. 2002;14(44):10563–10568.
  • Takemura K, Yamawaki H, Fujihisa H, et al. High-pressure x-ray studies of Zn at room and low temperatures with a He-pressure medium. High Press Res. 2002;22(2):337–341. doi: 10.1080/08957950212816
  • Steinle-Neumann G, Stixrude L, Cohen RE. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure. Phys Rev B. 2001;63(5):054103. doi: 10.1103/PhysRevB.63.054103
  • Harrison WA. Band structure and Fermi surface of zinc. Phys Rev. 1962;126(2):497–505. doi: 10.1103/PhysRev.126.497
  • O'Sullivan WJ, Schirber JE. Pressure dependence of the low-frequency de Haas—van Alphen oscillations in Zn. Phys Rev. 1966;151(2):484–494. doi: 10.1103/PhysRev.151.484
  • Stark RW, Falicov LM. Band structure and Fermi surface of zinc and cadmium. Phys Rev Lett. 1967;19(14):795–798. doi: 10.1103/PhysRevLett.19.795
  • Auluck S. Correlation between anisotropy in the normal-state mass renormalization and anisotropy in the superconducting energy gap for zinc. J Low Temp Phys. 1973;12(5–6):601–629. doi: 10.1007/BF00654961
  • Auluck S, Stark RW. Effect of changes in the lattice parameters on the Fermi surface of zinc. J Low Temp Phys. 1976;25(1):219–224. doi: 10.1007/BF00654830
  • Brennan TD, Burdett JK. Electronic structure of elemental calcium and zinc. Inorg Chem. 1993;32(5):746–749. doi: 10.1021/ic00057a039
  • Kechin VV. Electronic topological transitions in Zn under compression. Phys Rev B. 2001;63(4):045119. doi: 10.1103/PhysRevB.63.045119
  • Daniuk S, Jarlborg T, Kontrym-Sznajd G, et al. Electronic structure of Mg, Zn and Cd. J Phys: Condens Matter. 1989;1(44):8397–8406.
  • Cohen MH, Falicov LM. Effect of spin–orbit splitting on the Fermi surfaces of the hexagonal-close-packed metals. Phys Rev Lett. 1960;5(12):544–546. doi: 10.1103/PhysRevLett.5.544
  • Alekseevskii NE, Gaidukov YP. Open cross sections of cadmium, zinc and thallium Fermi surfaces. Soviet J Exp Theor Phys. 1963;16:1481–1488.
  • Joseph AS, Gordon WL, Reitz JR, et al. Evidence for spin-orbit splitting in the band structure of Zinc and Cadmium. Phys Rev Lett. 1961;7(9):334–336. doi: 10.1103/PhysRevLett.7.334
  • Cohen MH, Falicov LM. Magnetic breakdown in crystals. Phys Rev Lett. 1961;7(6):231–233. doi: 10.1103/PhysRevLett.7.231
  • Juras GE, Segall B, Sommers CB. Electronic structure of zinc. Solid State Commun. 1972;10(5):427–431. doi: 10.1016/0038-1098(72)90912-X
  • Jank W, Hafner J. Structural and electronic properties of the liquid polyvalent elements. II. The divalent elements. Phys Rev B. 1990;42(11):6926–6938. doi: 10.1103/PhysRevB.42.6926
  • Fabian DJ. Soft X-ray band spectra and the electronic structure of metals and materials. In: Soft X-ray band spectra and the electronic structure of metals and materials. Conf. Proceedings, Strathelyde, Scotland. London: Academic Press; 1968.
  • Mosteller LP, Huen T, Wooten F. Photoelectric emission from Zn. Phys Rev. 1969;184(2):364–366. doi: 10.1103/PhysRev.184.364
  • Wallace WE. Bonding in the zinc family metals. J Chem Phys. 1955;23(12):2281–2294. doi: 10.1063/1.1740739
  • Ballentine LE. Calculation of the electronic structure of liquid metals. Can J Phys. 1966;44(11):2533–2552. doi: 10.1139/p66-209
  • Ziman JM. A theory of the electrical properties of liquid metals. I: The monovalent metals. Phil Mag. 1961;6(68):1013–1034. doi: 10.1080/14786436108243361
  • Ziman JM. The electron transport properties of pure liquid metals. Adv Phys. 1967;16(64):551–580. doi: 10.1080/00018736700101665
  • Bradley CC, Faber TE, Wilson EG, et al. A theory of the electrical properties of liquid metals II. Polyvalent metals. Phil Mag. 1962;7(77):865–887. doi: 10.1080/14786436208212676
  • Faber TE, Ziman JM. A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys. Phil Mag. 1965;11(109):153–173. doi: 10.1080/14786436508211931
  • Ashcroft NW, Lekner J. Structure and resistivity of liquid metals. Phys Rev. 1966;145(1):83–90. doi: 10.1103/PhysRev.145.83
  • Mott NF. The electrical resistivity of liquid transition metals. Phil Mag. 1972;26(6):1249–1261. doi: 10.1080/14786437208220339
  • Evans R, Greenwood DA, Lloyd P. Calculations of the transport properties of liquid transition metals. Phys Lett A. 1971;35(2):57–58. doi: 10.1016/0375-9601(71)90543-3
  • Dreirach O, Evans R, Guntherodt HJ, et al. A simple muffin tin model for the electrical resistivity of liquid noble and transition metals and their alloys. J Phys F: Met Phys. 1972;2(4):709–725. doi: 10.1088/0305-4608/2/4/015
  • Hirata K, Waseda Y, Jain A, et al. Resistivity of liquid transition metals and their alloys using the t matrix. J Phys F: Met Phys. 1977;7(3):419–425. doi: 10.1088/0305-4608/7/3/014
  • Ononiwu JS. Calculation of electrical resistivity of liquid transition metals. Phys Status Solidi B. 1993;177(2):413–423. doi: 10.1002/pssb.2221770217
  • Shvets VT, Savenko S, Datsko S. Perturbation theory for electrical resistivity of liquid transition metals. Condens Matter Phys. 2002;5(3):511–521. doi: 10.5488/CMP.5.3.511
  • Lynch RW, Drickamer HG. The effect of pressure on the resistance and lattice parameters of cadmium and zinc. J Phys Chem Solid. 1965;26(1):63–68. doi: 10.1016/0022-3697(65)90073-9
  • Garg AB, Vijayakumar V, Modak P, et al. High-pressure resistance and equation-of-state anomalies in Zn: a possible Lifshitz transition. J Phys: Condens Matter. 2002;14(38):8795–8802.
  • Potzel W, Adlassnig W, Moser J, et al. Zn 67 Mössbauer study of zinc metal at high pressure. Phys Rev B. 1989;39(12):8236–8241. doi: 10.1103/PhysRevB.39.8236
  • Potzel W, Steiner M, Karzel H, et al. Electronically driven soft modes in zinc metal. Phys Rev Lett. 1995;74(7):1139–1142. doi: 10.1103/PhysRevLett.74.1139
  • Brandt NB, Itskevich ES, Minina NY. Influence of pressure on the Fermi surface of metals. Soviet Phys Uspekhi. 1972;14(4):438–454. doi: 10.1070/PU1972v014n04ABEH004731
  • Venttsel VA, Voronov CA, Likhter AI, et al. Effect of pressure on the Fermi surface of zinc. Soviet J Exp Theor Phys. 1974;38:1220.
  • Templeton IM. The effect of hydrostatic pressure on the fermi surfaces of copper, silver, and gold. II. High precision studies. Can J Phys. 1974;52(17):1628–1634.
  • Budarin AG, Ventsel VA, Rudnev AV. Effective pressure on the Fermi surface of zinc. Soviet J Exp Theor Phys. 1978;75:1706–1713.
  • Higgins RJ, Marcus JA. Magnetic breakdown in zinc and its alloys as seen in the de Haas-van Alphen effect. Phys Rev. 1967;161(3):589–597. doi: 10.1103/PhysRev.161.589
  • Van Dyke JP, McClure JW, Doar JF. Theory of magnetic breakdown, g factor, and energy-band structure of Zinc. Phys Rev B. 1970;1(6), 2511–2522. doi: 10.1103/PhysRevB.1.2511
  • Desai PD, Chu TK, James HM, et al. Electrical resistivity of selected elements. J Phys Chem Ref Data. 1984;13(4):1069–1096. doi: 10.1063/1.555723
  • Kasowski RV, Falicov LM. Calculation of the temperature dependence of the Knight shift in cadmium. Phys Rev Lett. 1969;22(19):1001–1003. doi: 10.1103/PhysRevLett.22.1001
  • Stacey FD, Anderson L. Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys Earth Planet Int. 2001;124(3):153–162. doi: 10.1016/S0031-9201(01)00186-8
  • Stacey FD, Loper DE. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys Earth Planet Int. 2007;161(1):13–18. doi: 10.1016/j.pepi.2006.12.001
  • Secco RA. High p, T physical property studies of Earth's interior: thermoelectric power of solid and liquid Fe up to 6.4 GPa. Can J Phys. 1995;73(5–6):287–294. doi: 10.1139/p95-040
  • Secco RA, Schloessin HH. On-line p, T calibration based on well-known phase transitions. J Appl Phys. 1986;60(5):1625–1633. doi: 10.1063/1.337251
  • Akella J, Ganguly J, Grover R, et al. Melting of lead and zinc to 60 kbar. J Phys Chem Solid. 1973;34(4):631–636. doi: 10.1016/S0022-3697(73)80168-4
  • Lees J, Williamson BHJ. Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars. Nature. 1965;208:278–279. doi: 10.1038/208278a0
  • Errandonea D. The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys. 2010;108(3):033517. doi: 10.1063/1.3468149
  • Shuker P, Melchior A, Assor Y, et al. IR pyrometry in diamond anvil cell above 400K. Rev Sci Instrum. 2008;79(7):073908. doi: 10.1063/1.2953307
  • Lennard-Jones JE, Devonshire AF. Critical and co-operative phenomena. III. A theory of melting and the structure of liquids. Proc Math Phys Eng Sci. 1939;169:317–338. doi: 10.1098/rspa.1939.0002
  • Knight WD, Berger AG, Heine V. Nuclear resonance in solid and liquid metals: a comparison of electronic structures. Ann Phys. 1959;8(2):173–193. doi: 10.1016/0003-4916(59)90017-X
  • Busch G, Güntherodt HJ. Electronic properties of liquid metals and alloys. Solid State Phys. 1974;29:235–313. doi: 10.1016/S0081-1947(08)60426-9
  • Shvets VT. Influence of sd hybridization of the electrical conductivity of liquid transition metals. Theoret Math Phys. 1982;53(1):1040–1046. doi: 10.1007/BF01014802
  • Barron THK, Munn RW. Analysis of the thermal expansion of anisotropic solids: application to zinc. Phil Mag. 1967;15(133):85–103. doi: 10.1080/14786436708230352
  • Rao RR. Anderson-Grüneisen parameter δ of some hexagonal metals and MgO from third-order elastic-constant data. Phys Rev B. 1974;10(10):4173–4177. doi: 10.1103/PhysRevB.10.4173
  • Singh RN, Arafin S, George AK. Temperature-dependent thermo-elastic properties of s-, p-and d-block liquid metals. Phys B Condens Matter. 2007;387(1):344–351. doi: 10.1016/j.physb.2006.04.029
  • Franz R, Wiedemann G. Ueber die wärme-leitungsfähigkeit der metalle. Annalen der Physik und Chemie. 1853;165(8):497–531. doi: 10.1002/andp.18531650802
  • Klemens PG, Williams RK. Thermal conductivity of metals and alloys. Int Met Rev. 1986;31(1):197–215. doi: 10.1179/095066086790324294
  • Jacobsson P, Sundqvist B. Thermal diffusivity of zinc as a function of pressure and temperature. High Temp High Press. 1985;17(1):103–109.
  • Secco RA. Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number. Phys Earth Planet Int. 2017;265:23–34. doi: 10.1016/j.pepi.2017.01.005
  • Touloukian YS, Powell RW, Ho CY, et al. Thermophysical properties of matter – the TPRC data series. Volume 10. Thermal diffusivity. Lafayette, IN: Thermophysical and Electronic Properties Information Analysis Center; 1974.
  • Bohlin L. Thermal conduction of metals at high pressure. Solid State Commun. 1976;19(4):389–390. doi: 10.1016/0038-1098(76)91359-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.