496
Views
8
CrossRef citations to date
0
Altmetric
Special Section on Focus: Novel High Pressure Devices

A symmetric miniature diamond anvil cell for magnetic measurements on dense hydrides in a SQUID magnetometer

ORCID Icon, , , &
Pages 465-474 | Received 05 Sep 2017, Accepted 19 Sep 2017, Published online: 10 Oct 2017

References

  • Li Y, Hao J, Liu H, et al. Pressure-stabilized superconductive yttrium hydrides. Sci Rep. 2015;5:9948. doi: 10.1038/srep09948
  • Liu H, Naumov II, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc Natl Acad Sci USA. 2017;114:6990–6995. doi: 10.1073/pnas.1704505114
  • Drozdov AP, Eremets MI, Troyan IA, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015;525:73–76. doi: 10.1038/nature14964
  • Guigue B, Marizy A, Loubeyre P. Direct synthesis of pure H3S from S and H elements: no evidence of the cubic superconducting phase up to 160 GPa. Phys Rev B. 2017;95:20104. doi: 10.1103/PhysRevB.95.020104
  • Majumdar A, Tse JS, Yao Y. Modulated structure calculated for superconducting hydrogen sulfide. Angew Chemie Int Ed. 2017.
  • Eremets MI. High pressure experimental methods. Oxford: Oxford University Press; 1996.
  • Mito M, Hitaka M, Kawae T, et al. Development of miniature diamond anvil cell for the superconducting quantum interference device magnetometer. Jpn J Appl Phys. 2001;40:6641–6644. doi: 10.1143/JJAP.40.6641
  • Kobayashi TC, Hidaka H, Kotegawa H, et al. Nonmagnetic indenter-type high-pressure cell for magnetic measurements. Rev Sci Instrum. 2007;78:23909. doi: 10.1063/1.2459512
  • Alireza PL, Lonzarich GG. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer. Rev Sci Instrum. 2009;80:23906. doi: 10.1063/1.3077303
  • Martin C, Agosta CC, Tozer SW, et al. Critical field and shubnikov-de haas oscillations of κ-(BEDT-TTF)2Cu(NCS)2 under pressure. J Low Temp Phys. 2005;138:1025–1037. doi: 10.1007/s10909-004-2898-8
  • Giriat G, Wang W, Attfield JP, et al. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer. Rev Sci Instrum. 2010;81:73905. doi: 10.1063/1.3465311
  • Graf DE, Stillwell RL, Purcell KM, et al. Nonmetallic gasket and miniature plastic turnbuckle diamond anvil cell for pulsed magnetic field studies at cryogenic temperatures. High Press Res. 2011;31:533–543. doi: 10.1080/08957959.2011.633909
  • Tateiwa N, Haga Y, Fisk Z, et al. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer. Rev Sci Instrum. 2011;82:53906. doi: 10.1063/1.3590745
  • Tateiwa N, Haga Y, Matsuda TD, et al. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer. Rev Sci Instrum. 2012;83:53906. doi: 10.1063/1.4722945
  • Tateiwa N, Haga Y, Matsuda TD, et al. Note: improved sensitivity of magnetic measurements under high pressure in miniature ceramic anvil cell for a commercial SQUID magnetometer. Rev Sci Instrum. 2013;84:46105. doi: 10.1063/1.4802832
  • Wang X, Kamenev K V. Review of modern instrumentation for magnetic measurements at high pressure and low temperature. Low Temp Phys. 2014;40:735–746. doi: 10.1063/1.4892645
  • Koyama K, Hane S, Kamishima K, et al. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures. Rev Sci Instrum. 1998;69:3009–3014. doi: 10.1063/1.1149048
  • Kamishima K, Hagiwara M, Yoshida H. Investigation of a strong titanium alloy KS15-5-3 and the application to a high pressure apparatus for magnetization measurements. Rev Sci Instrum. 2001;72:1472. doi: 10.1063/1.1337074
  • Letoullec R, Pinceaux JP, Loubeyre P. The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Press Res. 1988;1:77–90. doi: 10.1080/08957958808202482
  • Wang X, Misek M, Jacobsen MK, et al. Use of an advanced composite material in construction of a high pressure cell for magnetic ac susceptibility measurements. High Press Res. 2014;34:371–384. doi: 10.1080/08957959.2014.977276
  • No Title [Internet]. Available from: http://www.almax-easylab.com/TypeIaStandardDesign.aspx
  • Eichler A, Wittig J. Pressure dependence of the superconducting transition temperature of lead (in German). Zeitschrift für Angew Phys. 1968;25:319–327.
  • Clark MJ, Smith TF. Pressure dependence of Tc for lead. J Low Temp Phys. 1978;32:495–503. doi: 10.1007/BF00117966
  • Eiling A, Schilling JS. Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. J Phys F Met Phys. 1981;11:623–639. doi: 10.1088/0305-4608/11/3/010
  • Hemmes H, Driessen A, Griessen R, et al. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell. Phys Rev B. 1989;39:4110–4118. doi: 10.1103/PhysRevB.39.4110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.