Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 1
173
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electrical resistivity of fluid methane multiply shock compressed to 147 GPa

, , &
Pages 1-11 | Received 27 Nov 2016, Accepted 25 Oct 2017, Published online: 23 Nov 2017

References

  • Ness NF, Acuña MH, Burlaga LF, et al. Magnetic fields at Neptune. Science. 1989;246:1473–1478. doi: 10.1126/science.246.4936.1473
  • Hubbard WB, Nellis WJ, Mitchell AC, et al. Interior structure of Neptune: comparison with Uranus. Science. 1991;253:648–651. doi: 10.1126/science.253.5020.648
  • Stevenson DJ. Planetary magnetic fields. Rep Prog Phys. 1983;46:555–620. doi: 10.1088/0034-4885/46/5/001
  • Bini R, Pratesi G. High-pressure infrared study of solid methane: phase diagram up to 30 GPa. Phys Rev B. 1997;55:14800–14809. doi: 10.1103/PhysRevB.55.14800
  • Bini R, Ulivi L, Jodl HJ, et al. High pressure crystal phases of solid CH4 probed by Fourier transform infrared spectroscopy. J Chem Phys. 1995;103:1353–1360. doi: 10.1063/1.469810
  • Hebert P, Polian A, Loubeyre P, et al. Optical studies of methane under high pressure. Phys Rev B. 1987;36:9196–9201. doi: 10.1103/PhysRevB.36.9196
  • Hirai H, Konagai K, Kawamura T, et al. Phase changes of solid methane under high pressure up to 86 GPa at room temperature. Chem Phy Lett. 2008;454:212–217. doi: 10.1016/j.cplett.2008.01.082
  • Nakahata I, Matsui N, Akahama Y, et al. Structural studies of solid methane at high pressures. Chem Phys Lett. 1999;302:359–362. doi: 10.1016/S0009-2614(99)00092-5
  • Umemoto S, Yoshii T, Akahama Y, et al. X-ray diffraction measurements for solid methane at high pressures. J Phys: Condens Matter. 2002;14:10675–10678.
  • Sun L, Ruoff AL, Zha CS, et al. Optical properties of methane to 288 GPa at 300K. J Phys Chem Solids. 2006;67:2603–2608. doi: 10.1016/j.jpcs.2006.08.003
  • Ross M. The ice layer in Uranus and Neptune – diamonds in the sky? Nature. 1981;292:435–436. doi: 10.1038/292435a0
  • Gao G, Oganov AR, Ma Y, et al. Dissociation of methane under high pressure. J Chem Phys. 2010;133:144508. doi: 10.1063/1.3488102
  • Nellis WJ, Hamilton DC, Mitchell AC. Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar). J Chem Phys. 2001;115:1015–1019. doi: 10.1063/1.1379537
  • Hirai H, Konagai K, Kawamura T, et al. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys Earth Planet Inter. 2009;174:242–246. doi: 10.1016/j.pepi.2008.06.011
  • Benedetti LR, Nguyen JH, Caldwell WA, et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science. 1999;286:100–102. doi: 10.1126/science.286.5437.100
  • Nellis WJ, Weir ST, Mitchell AC. Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Phys Rev B. 1999;59:3434–3449. doi: 10.1103/PhysRevB.59.3434
  • Ogilvie KM, Duvall GE. Shock-induced changes in the electronic spectra of liquid CS2. J Chem Phys. 1983;78:1077–1087. doi: 10.1063/1.444890
  • Yoo CS, Duvall GE, Furrer J, et al. Effects of pressure and dilution on the visible and ultraviolet spectrum of liquid carbon disulfide under shock compression. J Chem Phys. 1989;93:3012–3021. doi: 10.1021/j100345a029
  • Nellis WJ, Moriarty JA, Mitchell AC, et al. Metals physics at ultrahigh pressure: aluminum, copper, and lead as prototypes. Phys Rev Lett. 1988;60:1414–1417. doi: 10.1103/PhysRevLett.60.1414
  • Ross M. A high-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system. J Chem Phys. 1979;71:1567–1571. doi: 10.1063/1.438501
  • Ross M, Ree FH. Repulsive forces of simple molecules and mixtures at high density and temperature. J Chem Phys. 1980;73:6146–6152. doi: 10.1063/1.440106
  • Ross M, Ree FH, Young DA. The equation of state of molecular hydrogen at very high density. J Chem Phys. 1983;79:1487–1494. doi: 10.1063/1.445939
  • Ashcroft NW. Hydrogen dominant metallic alloys: high temperature superconductors? Phys Rev Lett. 2004;92:187002. doi: 10.1103/PhysRevLett.92.187002
  • Mitchell AC, Nellis WJ. Shock compression of aluminum, copper, and tantalum. J Appl Phys. 1981;52:3363–3374. doi: 10.1063/1.329160
  • Chijioke AD, Nellis WJ, Silvera IF. High-pressure equations of state of Al, Cu, Ta, and W. J Appl Phys. 2005;98:073526. doi: 10.1063/1.2071449
  • Zhang MJ, Liu FS, Tian CL. Multi-shock compression of dense hydrogen–helium mixture beyond 100 GPa. Chin Phys Lett. 2006;23:2190–2193. doi: 10.1088/0256-307X/23/8/063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.