Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 2
449
Views
1
CrossRef citations to date
0
Altmetric
Articles

Boron-doped diamond as a new heating element for internal-resistive heated diamond-anvil cell

, , , , , , & show all
Pages 120-135 | Received 06 Sep 2017, Accepted 02 Feb 2018, Published online: 28 Feb 2018

References

  • Ito E. Multi-anvil cells and high-pressure experimental methods. In: Schubert G, editor. Treatise on geophysics. 2nd ed., vol. 2, Amsterdam: Elsevier; 2015. p. 233–261.
  • Murakami M, Hirose K, Kawamura K, et al. Post-perovskite phase transition in MgSiO3. Science. 2004;304:855–858. doi: 10.1126/science.1095932
  • Grocholski B, Catalli K, Shim S-H, et al. Mineralogical effects on the detectability of the postperovskite boundary. Proc Natl Acad Sci. 2012;109:2275–2279. doi: 10.1073/pnas.1109204109
  • Nomura R, Ozawa H, Tateno S, et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature. 2011;473:199–202. doi: 10.1038/nature09940
  • Andrault D, Petitgirard S, Lo Nigro G, et al. Solid-liquid iron partitioning in Earth’s deep mantle. Nature. 2012;487:354–357. doi: 10.1038/nature11294
  • Tateno S, Hirose K, Ohishi Y. Melting experiments on peridotite to lowermost mantle conditions. J Geophys Res. 2014;119:4684–4694. doi: 10.1002/2013JB010616
  • Pradhan GK, Fiquet G, Siebert J, et al. Melting of MORB at core–mantle boundary. Earth Planet Sci Lett. 2015;431:247–255. doi: 10.1016/j.epsl.2015.09.034
  • Sinmyo R, Hirose K, Muto S, et al. The valence state and partitioning of iron in the Earth’s lowermost mantle. J Geophys Res. 2011;116:B07205. doi: 10.1029/2010JB008179
  • Piet H, Badro J, Nabiei F, et al. Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proc Natl Acad Sci. 2016;113:11127–11130. doi: 10.1073/pnas.1605290113
  • Fiquet G, Auzende AL, Siebert J, et al. Melting of peridotite to 140 gigapascals. Science. 2010;329:1516–1518. doi: 10.1126/science.1192448
  • Nomura R, Hirose K, Uesugi K, et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science. 2014;343:522–525. doi: 10.1126/science.1248186
  • Sinmyo R, Hirose K, Nishio-Hamane D, et al. Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. J Geophys Res. 2008;113:B11204. doi: 10.1029/2008JB005730
  • Sinmyo R, Hirose K. The soret diffusion in laser-heated diamond-anvil cell. Phys Earth Planet Inter. 2010;180:172–178. doi: 10.1016/j.pepi.2009.10.011
  • Yamazaki D, Ito E, Yoshino T, et al. Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys Earth Planet Int. 2014;228:262–267. doi: 10.1016/j.pepi.2014.01.013
  • Tange Y, Takahashi E, Nishihara Y, et al. Phase relations in the system MgO–FeO–SiO2 to 50 GPa and 2000°C: an application of experimental techniques using multianvil apparatus with sintered diamond anvils. J Geophys Res. 2009;114:B02214.
  • Fei Y, Mao HK. In situ determination of the NiAs phase of FeO at high pressure and temperature. Science. 1994;266:1678–1680. doi: 10.1126/science.266.5191.1678
  • Dubrovinskaia N, Dubrovinsky L. Whole-cell heater for the diamond anvil cell. Rev Sci Instrum. 2003;74:3433–3437. doi: 10.1063/1.1578151
  • Du Z, Miyagi L, Amulele G, et al. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K. Rev Sci Inst. 2013;84:024502. doi: 10.1063/1.4792395
  • Kawaguchi SI, Nakajima Y, Hirose K, et al. Sound velocity of liquid Fe-Ni-S at high pressure. J Geophys Res. 2017;122:3624–3634. doi: 10.1002/2016JB013609
  • Boehler R. The phase diagram of iron to 430 kbar. Geophys Res Lett. 1986;13:1153–1156. doi: 10.1029/GL013i011p01153
  • Zha CS, Bassett WA. Internal resistive heating in diamond anvil cell for in situ x-ray diffraction and Raman scattering. Rev Sci Instrum. 2003;74:1255–1262. doi: 10.1063/1.1539895
  • Dubrovinsky L, Dubrovinskaia N, Narygina O, et al. Body-centered cubic iron-nickel alloy in Earth’s core. Science. 2007;316:1880–1883. doi: 10.1126/science.1142105
  • Komabayashi T, Fei Y, Meng Y, et al. In-situ X-ray diffraction measurements of the γ-ε transition boundary of iron in an internally-heated diamond anvil cell. Earth Planet Sci Lett. 2009;282:252–257. doi: 10.1016/j.epsl.2009.03.025
  • Komabayashi T, Hirose K, Ohishi Y. In situ X-ray diffraction measurements of the fcc–hcp phase transition boundary of an Fe–Ni alloy in an internally heated diamond anvil cell. Phys Chem Miner. 2012;39:329–338. doi: 10.1007/s00269-012-0490-3
  • Zha CS, Mibe K, Bassett WA, et al. P-V-T equation of state of platinum to 80 GPa and 1900K from internal resistive heating/x-ray diffraction measurements. J Appl Phys. 2008;103:054908. doi: 10.1063/1.2844358
  • Ekimov EA, Sidorov VA, Bauer ED, et al. Superconductivity in diamond. Nature. 2004;428:542–545. doi: 10.1038/nature02449
  • Yamada A, Irifune T, Sumiya H, et al. Exploratory study of the new B-doped diamond heater at high pressure and temperature and its application to in situ XRD experiments on hydrous Mg-silicate melt. High Press Res. 2008;28:255–264. doi: 10.1080/08957950802261042
  • Shatskiy A, Yamazaki D, Morard G, et al. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev Sci Instrum. 2009;80:023907. doi: 10.1063/1.3084209
  • Yoneda A, Xie L, Tsujino N, et al. Semiconductor diamond heater in a Kawai multianvil apparatus: an innovation generating the lower-mantle geotherm. High Press Res. 2014;34:392–403. doi: 10.1080/08957959.2014.969255
  • Xie L, Yoneda A, Yoshino T, et al. Graphite–boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures. High Press Res. 2016;36:105–120. doi: 10.1080/08957959.2016.1164151
  • Xie L, Yoneda A, Yoshino T, et al. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus. Rev Sci Inst. 2017;88:093904. doi: 10.1063/1.4993959
  • Tateno S, Sinmyo R, Hirose K, et al. The advanced ion-milling method for preparation of thin film using ion slicer: application to a sample recovered from diamond-anvil cell. Rev Sci Instrum. 2009;80:013901. doi: 10.1063/1.3058760
  • Miletich R, Cinato D, Johänntgen S. An internally heated composite gasket for diamond-anvil cells using the pressure-chamber wall as the heating element. High Press Res. 2009;29:290–305. doi: 10.1080/08957950902747403
  • Ohnishi S, Kuwayama Y, Inoue T. Melting relations in the MgO-MgSiO3 system up to 70 GPa. Phys Chem Miner. 2017;44:445–453. doi: 10.1007/s00269-017-0871-8
  • Ohishi Y, Hirao N, Sata N, et al. Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Press Res. 2008;28:163–173. doi: 10.1080/08957950802208910
  • Akahama Y, Kawamura H. High pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys. 2004;96:3748–3751. doi: 10.1063/1.1778482
  • Dewaele A, Belonoshko AB, Garbarino G, et al. High-pressure–high-temperature equation of state of KCl and KBr. Phys Rev B. 2012;85:214105. doi: 10.1103/PhysRevB.85.214105
  • Yurimoto H, Nagashima K, Kunihiro T. High precision isotope micro-imaging of materials. Appl Surface Sci. 2003;203–204:793–797. doi: 10.1016/S0169-4332(02)00825-5
  • Park C, Wakaki S, Sakamoto N, et al. Oxygen isotopic composition of the solar nebula gas inferred from high-precision isotope imaging of melilite crystals in an Allende CAI. Meteorit. Planet Sci. 2012;47:2070–2083. doi: 10.1111/maps.12032
  • Zellmer GF, Sakamoto N, Hwang SL, et al. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic Tephras through submicron-resolution imaging. Front Earth Sci. 2016;4:88. doi: 10.3389/feart.2016.00088
  • Ohta K, Yagi T, Taketoshi N, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth Planet. Sci Lett. 2012;349–350:109–115. doi: 10.1016/j.epsl.2012.06.043
  • Imada S, Ohta K, Yagi T, et al. Measurements of lattice thermal conductivity of MgO to core–mantle boundary pressures. Geophys Res Lett. 2014;41:4542–4547. doi: 10.1002/2014GL060423
  • Manthilake GM, de Koker N, Frost DJ, et al. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core. Proc Natl Acad Sci USA. 2011;108:17901–17904. doi: 10.1073/pnas.1110594108
  • Tange Y, Kuwayama Y, Irifune T, et al. P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: a comprehensive reference for mineralogy of the lower mantle. J Geophys Res. 2012;117:B06201. doi: 10.1029/2011JB008988
  • Tange Y, Nishihara Y, Tsuchiya T. Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys Res. 2009;114:B03208.
  • Murakami M, Hirose K, Sata N, et al. Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett. 2005;32:L03304. doi: 10.1029/2004GL021956
  • Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys. 1962;33:3125–3131. doi: 10.1063/1.1728579
  • Antonangeli D, Krisch M, Farber DL, et al. Elasticity of hexagonal-closed-packed cobalt at high pressure and temperature: a quasiharmonic case. Phys Rev Lett. 2008;100:085501. doi: 10.1103/PhysRevLett.100.085501
  • Nakajima Y, Imada S, Hirose K, et al. Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy. Nat Comm. 2015;6:8942. doi: 10.1038/ncomms9942
  • Lin JF, Sturhahn W, Zhao J, et al. Sound velocities of hot dense iron: Birch’s law revisited. Science. 2005;308:1892–1894. doi: 10.1126/science.1111724
  • Shahar A, Schauble EA, Caracas R, et al. Pressure-dependent isotopic composition of iron alloys. Science. 2016;352:580–582. doi: 10.1126/science.aad9945
  • Fukui H, Hiraoka N, Aoki K, et al. Suppression of X-ray-induced dissociation of H2O molecules in dense ice under pressure. Sci Rep. 2016;6:26641S. doi: 10.1038/srep26641

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.