Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 4
476
Views
15
CrossRef citations to date
0
Altmetric
Articles

Equation of state of solid Ne inter-calibrated with the MgO, Au, Pt, NaCl-B2, and ruby pressure scales up to 130 GPa

ORCID Icon, ORCID Icon, &
Pages 377-395 | Received 06 Mar 2018, Accepted 18 Jun 2018, Published online: 06 Aug 2018

References

  • Kim E, Nicol M, Cynn H, et al. Martensitic fcc-to-hcp transformations in solid Xenon under pressure: a first-principles study. Phys Rev Lett. 2006;96:035504. doi: 10.1103/PhysRevLett.96.035504
  • Fei Y, Ricolleau A, Frank M, et al. Toward an interanlly consistent pressure scale. Proc Natl Acad Sci USA. 2007;104:9182–9186. doi: 10.1073/pnas.0609013104
  • Dorfman SM, Prakapenka VB, Meng Y, et al. Intercomparision of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. J Geophys Res. 2012;117:08210.
  • Cynn H, Yoo CS, Baer B, et al. Martensitic fcc-to-hcp transformation observed in Xenon at high pressure. Phys Rev Lett. 2001;86:4552–4555. doi: 10.1103/PhysRevLett.86.4552
  • Errandonea D, Schwager B, Boehler R, et al. Phase behavior of Krypton and xenon to 50 GPa. Phys Rev B. 2002;65:214110. doi: 10.1103/PhysRevB.65.214110
  • Errandonea D, Boehler R, Japel S, et al. Structural transformation of compressed solid Ar: an x-ray diffraction study to 114 GPa. Phys Rev B. 2006;73:092106. doi: 10.1103/PhysRevB.73.092106
  • Freiman YA, Goncharov AF, Tretyak SM, et al. Raman scattering in hcp rare gas solids under pressure. Phys Rev B. 2008;78:014301. doi: 10.1103/PhysRevB.78.014301
  • Hama J. Anomalously high metallization pressure of solid neon. Phys Lett A. 1984;105:303–306. doi: 10.1016/0375-9601(84)91003-X
  • Boettger JC. Equation of state and metallization of neon. Phys Rev B. 1986;33:6788–6791. doi: 10.1103/PhysRevB.33.6788
  • Runne M, Zimmerer G. Excitonic excitations and desorption from rare-gas solids. Nucl Instrum Methods Phys Res B. 1995;101:156–168. doi: 10.1016/0168-583X(95)00073-9
  • He YG, Tang XZ, Pu YK. First-principle study of solid neon under high compression. Phys B. 2010;405:4335–4338. doi: 10.1016/j.physb.2010.07.037
  • Hazen RM, Mao HK, Finger LW, et al. Crystal structures and compression of Ar, Ne, and CH4 at 20 degrees C to 9 kbar. Carnegie Inst Washington Yearb. 1980;79:348–351.
  • Finger LW, Hazen RM, Zou G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature. Appl Phys Lett. 1981;39:892–894. doi: 10.1063/1.92597
  • Dewaele A, Datchi F, Loubeyre P, et al. High pressure-high temperature equations of state of neon and diamond. Phys Rev B. 2008;77:094106. doi: 10.1103/PhysRevB.77.094106
  • Zarochentsev EV, Troitskaya EP. The forbidden gap and insulator-metal transition under pressure. Phys Solid State. 2002;44:1370–1379. doi: 10.1134/1.1494638
  • Zha CS, Mao HK, Hemley RJ. Elasticity of dense helium. Phys Rev B. 2004;70:174107. doi: 10.1103/PhysRevB.70.174107
  • Tsuchiya T, Kawamura K. First-principles study of systematics of high-pressure elasticity in rare gas solids, Ne, Ar, Kr, and Xe. J Chem Phys. 2002;117:5859–5865. doi: 10.1063/1.1502241
  • Ye Y, Prakapenka V, Meng Y, et al. Inter-comparison of the Gold, Platinum, and MgO pressure scales up to 140 GPa and 2500 K. J Geophys Res. 2017;122:3450–3464. doi: 10.1002/2016JB013811
  • Dorogokupets PI, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res. 2007;27:431–446. doi: 10.1080/08957950701659700
  • Hemley RJ, Zha CS, Jephcoat AP, et al. X-ray diffraction and equation of state of solid neon to 110 GPa. Phys Rev B. 1989;39:11820–11827. doi: 10.1103/PhysRevB.39.11820
  • Takemura K, Watanuki T, Ohwada K, et al. Powder X-ray diffraction study of Ne up to 240 GPa. J Phys Conference Series. 2010;215:012017. doi: 10.1088/1742-6596/215/1/012017
  • Rivers M, Prakapenka V, Kubo A, et al. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Res. 2008;28:273–292. doi: 10.1080/08957950802333593
  • Prakapenka VB, Kubo A, Kuznetsov A, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Res. 2008;28:225–235. doi: 10.1080/08957950802050718
  • Meng Y, Shen G, Mao HK. Double-sided laser heating system at HPCAT for insitu x-ray diffraction at high pressures and high temperatures. J Phys Condens Matter. 2006;18:S1097–S1103. doi: 10.1088/0953-8984/18/25/S17
  • Hammersley AP, Svensson SO, Hanfland M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 1996;14:235–248. doi: 10.1080/08957959608201408
  • Shim SH. Development of an X-ray diffraction analysis program suite for large data sets. COMPRES annual meeting; 2007.
  • Shim SH. PeakPo - A python software for X-ray diffraction analysis at high pressure and high temperature; 2017. Available from http://doi.org/10.5281/zenodo.810199
  • Takemura K, Dewaele A. Isothermal equation of state for gold with a He-pressure medium. Phys Rew B. 2008;78:104119. doi: 10.1103/PhysRevB.78.104119
  • Singh AK, Takemura K. Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media. J Appl Phys. 2001;90:3269–3275. doi: 10.1063/1.1397283
  • Singh AK, Balasingh C, Mao HK, et al. Analysis of lattice strains measured under nonhydrostatic pressure. J Appl Phys. 1998;83:7567–7575. doi: 10.1063/1.367872
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809
  • Angel RJ. Equations of state, in high-pressure, high-temperature crystal chemistry. In: Hazen RM, Downs RT, editos. Rev mineral geochem. Vol. 41. Washington, DC: Mineralogical Society of America; 2000. p. 35–60.
  • Stacey FD, Brennan BJ, Irvine RD. Finite strain theories and comparisons with seismological data. Geophys Surv. 1981;4:189–232. doi: 10.1007/BF01449185
  • Vinet P, Ferrante J, Smith JR, et al. A universal equation of state for solids. J Phys C Solid State Phys. 1986;19:L467–L473. doi: 10.1088/0022-3719/19/20/001
  • Vinet P, Ferrante J, Rose HJ, et al. Compressibility of solids. J Geophys Res. 1987;92:9319–9325. doi: 10.1029/JB092iB09p09319
  • Hemley RJ, Mao HK, Finger LW, et al. Equation of state of solid hydrogen and deuterium from single-crystal X-ray diffraction to 26.5 GPa. Phys Rev B. 1990;42:6458–6470. doi: 10.1103/PhysRevB.42.6458
  • Batchelder DN, Losee DL, Simmons RO. Measurements of lattice constant, thermal expansion, and isothermal compressibility of neon single crystals. Phys Rev. 1967;162:767–775. doi: 10.1103/PhysRev.162.767
  • Tange Y, Nishihara Y, Tsuchiya T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments. J Geophys Res. 2009;114:03208. doi: 10.1029/2008JB005813
  • Holzapfel WB. Progress in the realization of a practical pressure scale for the rang 1-300 GPa. High Pressure Res. 2005;25:87–99. doi: 10.1080/09511920500147501
  • Dewaele A, Loubeyre P, Occelli F, et al. Equations of state of six metals above 94 GPa. Phys Rev B. 2004;70:094112. doi: 10.1103/PhysRevB.70.094112
  • Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986;91:4673–4676. doi: 10.1029/JB091iB05p04673
  • Piermarini GJ, Block S, Barnett JD, et al. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys. 1975;46:2774–2780. doi: 10.1063/1.321957
  • Marsh SP. LASL shock Hugoniot data, report. Berkeley: University of California Press; 1980; p. 312–313.
  • Duffy TS, Ahrens TJ. Thermal expansion of mantle and core materials at very high pressure. Geophys Res Lett. 1993;20:1103–1106. doi: 10.1029/93GL00479
  • Zha CS, Mao HK, Hemley RJ. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci. 2000;97:13494–13499. doi: 10.1073/pnas.240466697
  • Speziale S, Zha CS, Duffy TS, et al. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state. J Geophys Res. 2001;106:515–528. doi: 10.1029/2000JB900318
  • Dorogokupets PI, Dymshits AM, Sokolova TS, et al. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and post- perovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russian Geol Geophys. 2015;56:172–189. doi: 10.1016/j.rgg.2015.01.011
  • Dorogokupets PI, Oganov AR. Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shockwave, ultrasonic, x-ray, and thermo- chemical data at high temperatures and pressures. Phys Rev B. 2007;75:024115. doi: 10.1103/PhysRevB.75.024115
  • Bukowinski MST, Aidun J. First principles versus spherical ion models of the B1 and B2 phases of NaCl. J Geophys Res. 1985;90:1794–1800. doi: 10.1029/JB090iB02p01794
  • Jacobsen SD, Holl CM, Adams KA, et al. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. Am Mineral. 2008;93:1823–1828. doi: 10.2138/am.2008.2988
  • Aleksandrov IV, Goncharov AF, Zisman AN, et al. Diamond at high pressures: Raman scattering of light, equation of state, and high-pressure scale. Sov Phys JETP. 1987;66:384–390.
  • Bell PM, Mao HK, Xu JA. Error analysis of parameter-fitting in equations of state for mantle minerals. In: Manghnani MH, Syono H, editors. High-press res miner phys. Tokyo: Terra Scienttific Publishing Co; 1987. p. 447–454.
  • Sokolova TS, Dorogokupets PI, Litasov KD, et al. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russian Geol Geophys. 2013;54:181–199. doi: 10.1016/j.rgg.2013.01.005
  • Sokolova TS, Dorogokupets PI, Dymshits AM, et al. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput Geosci. 2016;94:162–169. doi: 10.1016/j.cageo.2016.06.002
  • Anderson MS, Fugate RQ, Swenson CA. Equation of state for solid neon to 20 kbar. J Low Temp Phys. 1973;10:345–357. doi: 10.1007/BF00654913
  • Sata N, Shen G, Rivers ML, et al. Pressure-volume equation of state of the high- pressure B2 phase of NaCl. Phys Rev B. 2002;65:104114. doi: 10.1103/PhysRevB.65.104114
  • Fang ZH. Comment on “Pressure-volume equation of state of the high-pressure B2 phase of NaCl”. Phys Rev B. 2007;76:146101. doi: 10.1103/PhysRevB.76.146101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.