Publication Cover
High Pressure Research
An International Journal
Volume 39, 2019 - Issue 1
199
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of NaxMoO3 crystals through high pressure solid-state reaction

, , , , , , & show all
Pages 1-9 | Received 31 May 2018, Accepted 15 Nov 2018, Published online: 29 Nov 2018

References

  • Schlenker C, Dumas J, Greenblatt M, et al., editors. Physics and chemistry of low-dimensional inorganic conductors. New York (NY): Plenum Press; 1996. p. 15–43.
  • Mankowsky R, Liu B, Rajasekaran S, et al. Dynamical stability limit for the charge density wave in K0.3MoO3. Phys Rev Lett. 2017;118:116402-1–116402-5.
  • Whangbo MH, Evain M, Canadell E, et al. Structural origin of semiconducting properties of the molybdenum red bronzes, A0.33MoO3 (A=K, Rb, CS, TI). Inorg Chem. 1989;28:267–271. doi: 10.1021/ic00301a022
  • Greenblatt M, Ramanujachary KV, McCarroll H, et al. Quasi-two-dimensional electronic properties of the sodium molybdenum bronze, Na0.9Mo6O17. J Solid State Chem. 1985;59:149–154. doi: 10.1016/0022-4596(85)90312-3
  • Su L, Hsu CH, Lin H, et al. Charge density waves and the hidden nesting of purple bronze K0.9Mo6O17. Phys Rev Lett. 2017;118:257601-1–257601-5. doi: 10.1103/PhysRevLett.118.257601
  • Mou DX, Sapkota A, Kung HH, et al. Discovery of an unconventional charge density wave at the surface of K0.9Mo6O17. Phys Rev Lett. 2016;116:196401-1–196401-6. doi: 10.1103/PhysRevLett.116.196401
  • Xu XF, Bangura AF, Niu CQ, et al. Transport and thermodynamic properties of quasi-two-dimensional purple bronzes A0.9Mo6O17 (A = Na, K). Phys Rev B. 2012;85:195101-1–195101-7.
  • Ramanujachary KV, Greenblatt M, McCarroll WH. Crystal growth of alkali metal molybdenum bronzes by a temperature gradient flux technique. J Cryst Growth. 1984;70:476–483. doi: 10.1016/0022-0248(84)90305-1
  • Spahr ME, Novak P, Haas O, et al. Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. J Power Sources. 1995;54:346–351. doi: 10.1016/0378-7753(94)02099-O
  • Xia WW, Xu F, Zhu CY, et al. Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy. 2016;27:447–456. doi: 10.1016/j.nanoen.2016.07.017
  • Bither TA, Gillson JL, Youkg HS. Synthesis of molybdenum and tungsten bronzes at high pressure. Inorg Chem. 1966;5:1559–1562. doi: 10.1021/ic50043a020
  • Lisnyak VV, Stus NV, Stratiychuk DA, et al. New, high-temperature-high-pressure synthetic route: from crystalline hydrates to molybdenum bronzes NaxMoO3. J Alloys Compd. 2003;359:307–309.
  • Wang SM, Yu XH, Zhang JZ, et al. Synthesis, hardness, and electronic properties of stoichiometric VN and CrN. Cryst. Growth Des. 2016;16:351–358. doi: 10.1021/acs.cgd.5b01312
  • Wang SM, Ge H, Sun SL, et al. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J Am Chem Soc. 2015;137:4815–4822. doi: 10.1021/jacs.5b01446
  • Lei L, Zhang LL. Recent advance in high-pressure solid-state metathesis reactions. Matter Radiat Extremes. 2018;3:95–103. doi: 10.1016/j.mre.2017.12.003
  • Han YX, Wang SM, Liu YJ, et al. Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure. High Pressure Res. 2018;38:136–144. doi: 10.1080/08957959.2018.1428319
  • Brown BW, Banks E. The sodium tungsten bronzes. J Am Chem Soc. 1954;76:963–966. doi: 10.1021/ja01633a004
  • Kim DS, Ozawa TC, Fukuda K, et al. Soft-chemical exfoliation of Na0.9Mo2O4: preparation and electrical conductivity characterization of a molybdenum oxide nanosheet. Chem Mater. 2011;23:2700–2702. doi: 10.1021/cm2008208
  • Vitoux L, Guignard M, Suchomel MR, et al. The NaxMoO2 phase diagram (1/2≤x<1): an electrochemical Devil’s staircase. Chem Mater. 2017;29:7243–7254. doi: 10.1021/acs.chemmater.7b01834
  • Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater. 2017;16:454–460. doi: 10.1038/nmat4810
  • Huang XL, Leng M, Xiao W, et al. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv Funct Mater. 2017;27:1604943-1–1604943-8.
  • Xiang D, Han C, Zhang JL, et al. Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci Rep. 2015;4:4891–4896. doi: 10.1038/srep04891

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.