Publication Cover
High Pressure Research
An International Journal
Volume 39, 2019 - Issue 3
240
Views
14
CrossRef citations to date
0
Altmetric
Articles

Cuboctahedral type Ib diamonds in ophiolitic chromitites and peridotites: the evidence for anthropogenic contamination

, , , &
Pages 480-488 | Received 13 Feb 2019, Accepted 04 May 2019, Published online: 13 May 2019

References

  • Howell D, Griffin WL, Yang J, et al. Diamonds in ophiolites: contamination or a new diamond growth environment? Earth Planet Sci Lett. 2015;430:284–295. doi: 10.1016/j.epsl.2015.08.023
  • Lian D, Yang J, Wiedenbeck M, et al. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contrib Mineral Petrol. 2018;173:72. doi: 10.1007/s00410-018-1499-5
  • Robinson PT, Bai W-J, Malpas J, et al. Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Geol Soc, London, Special Publications. 2004;226:247–271. doi: 10.1144/GSL.SP.2004.226.01.14
  • Xu X, Yang J, Robinson PT, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res. 2015;27:686–700. doi: 10.1016/j.gr.2014.05.010
  • Yang J, Meng F, Xu X, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 2015;27:459–485. doi: 10.1016/j.gr.2014.07.004
  • Griffin WL, Afonso JC, Belousova EA, et al. Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol. 2016;57:655–684. doi: 10.1093/petrology/egw011
  • Bindi L, Griffin WL, Panero WR, et al. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep. 2018;8:5457. doi: 10.1038/s41598-018-23790-9
  • Yamamoto S, Komiya T, Hirose K, et al. Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos. 2009;109:314–322. doi: 10.1016/j.lithos.2008.05.003
  • Zhang Y, Jin Z, Griffin WL, et al. High-pressure experiments provide insights into the mantle transition zone history of chromitite in Tibetan ophiolites. Earth Planet Sci Lett. 2017;463:151–158. doi: 10.1016/j.epsl.2017.01.036
  • Satsukawa T, Griffin WL, Piazolo S, et al. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the mantle transition zone. Sci Rep. 2015;5:16484. doi: 10.1038/srep16484
  • Huang Z, Yang J, Robinson P, et al. The discovery of diamonds in chromitites of the Hegenshan ophiolite, Inner Mongolia, China. Acta Geol Sin Engl Ed. 2015;89:341–350. doi: 10.1111/1755-6724.12434
  • Yang J, Wirth R, Xiong F, et al. The lower mantle minerals in ophiolite-hosted diamond. Acta Geol Sin Engl Ed. 2015;89:108–109. doi: 10.1111/1755-6724.12308_65
  • Moe KS, Yang J-S, Johnson P, et al. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite. Lithosphere. 2017;10:133–141.
  • Zhang RY, Yang J-S, Ernst W, et al. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: new insights into the deep upper mantle and mantle transition zone. Am Mineral. 2016;101:1245–1251. doi: 10.2138/am-2016-5601CCBY
  • Tan X. Catalyst alloys processing. JOM. 2014;66:2176–2185. doi: 10.1007/s11837-014-0984-1
  • Rege S, Jackson S, Griffin W, et al. Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2005;20:601–611. doi: 10.1039/b501374g
  • Hao Z, He Y, Chen Y, et al. Nucleation and growth of diamond. J Cryst Growth. 1994;140:441–443. doi: 10.1016/0022-0248(94)90324-7
  • Li Y, Jia X, Chen N, et al. Method to eliminate the surface growth defects of large single crystal diamonds: an effective solution to improve the utilization rate for commercial production. Cryst Eng Comm. 2016;18:6889–6894. doi: 10.1039/C6CE01437B
  • Lin Z, Xiao-Peng J, Hong-An M, et al. Industrial diamonds grown in Ni70Mn25Co5–graphite–sulfur system under HPHT. Chin Phys B. 2009;18:333–338. doi: 10.1088/1674-1056/18/1/054
  • Xu X, Yang J, Chen S, et al. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. J Earth Sci. 2009;20:284–302. doi: 10.1007/s12583-009-0026-z
  • Yin L, Zou Z, Li M, et al. Characteristics of some inclusions contained in synthetic diamond single crystals. Mater Sci Eng A. 2000;293:107–111. doi: 10.1016/S0921-5093(00)01051-0
  • Sung C-MJ. Optimised cell design for high-pressure synthesis of diamond. High Temp High Pressures. 2001;33:489–501. doi: 10.1068/htjr014
  • Xu X, Cartigny P, Yang J, et al. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere. 2017;10:156–169. doi: 10.1130/L625.1
  • Gonzalez-Jimenez JM, Griffin WL, Proenza JA, et al. Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos. 2014;189:140–158. doi: 10.1016/j.lithos.2013.09.008
  • Savelieva GN, Nesbitt RW. A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites. J Geol Soc London. 1996;153:525–537. doi: 10.1144/gsjgs.153.4.0525
  • Zhou M-F, Robinson PT, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol. 1996;37:3–21. doi: 10.1093/petrology/37.1.3
  • Boyd SR, Pillinger CT, Milledge HJ, et al. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature. 1988;331:604–607. doi: 10.1038/331604a0
  • Reutsky VN, Harte B, Borzdov YM, et al. Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur J Mineral. 2008;20:365–374. doi: 10.1127/0935-1221/2008/0020-1816
  • Bai W-J, Zhou M-F, Robinson PT. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can J Earth Sci. 1993;30:1650–1659. doi: 10.1139/e93-143
  • Fang Q, Bai WJ. The discovery of Alpine-type diamond-bearing ultrabasic intrusions in Tibet. Geol Rev (Beijing). 1981;27:455–457.
  • Kaminsky FV. Diamond potential of non-kimberlitic igneous rocks. Moscow: Nedra; 1984.
  • Kutyev FS, Kutyeva GV. Diamonds in basaltoids of Kamchatka. Trans (Dokl) Akad Nauk USSR. 1975;221:183–186.
  • Pokhilenko NP, Shumilova TG, Afanasiev VP, et al. Finding of diamonds in Kamchatka volcanoes Tolbachik and Avacha: natural phenomenon or contamination by synthetic material? Russ Geol Geophys. 2019;60, in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.