Publication Cover
High Pressure Research
An International Journal
Volume 39, 2019 - Issue 3
337
Views
4
CrossRef citations to date
0
Altmetric
Articles

Modified Bridgman anvils for high pressure synthesis and neutron scattering

, , , &
Pages 426-437 | Received 04 Dec 2018, Accepted 04 May 2019, Published online: 16 Jun 2019

References

  • Squires GL. Introduction to the theory of thermal neutron scattering. Mineola (NY): Dover Publications; 1997.
  • Khvostantsev L, Slesarev V, Brazhkin V. Toroid type high-pressure device: history and prospects. High Press Res. 2004;24:371–383. doi: 10.1080/08957950412331298761
  • Klotz S. Techniques in high pressure neutron scattering. Boca Raton (FL): CRC Press – Taylor and Francis Group; 2013.
  • Klotz S, Besson J, Hamel G, et al. Neutron powder diffraction at pressures beyond 25 GPa. Appl Phys Lett. 1995;66:1735. doi: 10.1063/1.113350
  • Klotz S, Strässle T, Lebert B, et al. High pressure neutron diffraction to beyond 20 GPa and below 1.8 K using Paris-Edinburgh load frames. High Press Res. 2016;36:73–78. doi: 10.1080/08957959.2015.1136624
  • Iizuka R, Yagi T, Gotou H, et al. An opposed-anvil-type apparatus with an optical window and a wide-angle aperture for neutron diffraction. High Press Res. 2012;32:430–441. doi: 10.1080/08957959.2012.722213
  • Komatsu K, Klotz S, Shinozakia A, et al. Performance of ceramic anvils for high pressure neutron scattering. High Press Res. 2014;34(4):494–499. doi: 10.1080/08957959.2014.986476
  • Liebermann R. Multi-anvil, high pressure apparatus: a half century of development and progress. High Press Res. 2011;31:493–532. doi: 10.1080/08957959.2011.618698
  • Yamazaki D, Ito E, Yoshino T, et al. Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 Perovskite and Stishovite. Phys Earth Planet Inter. 2014;228:262–267. doi: 10.1016/j.pepi.2014.01.013
  • Abe J, Arakawa M, Hattori T, et al. A cubic-anvil high-pressure device for pulsed neutron powder diffraction. Rev Sci Instrum. 2010;81:043910.
  • Sano-Furukawa A, Hattori T, Arima H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev Sci Instrum. 2014;85:113905. doi: 10.1063/1.4901095
  • Osakabe T, Kakurai K, Kawana D, et al. Development of a hybrid-anvil type high-pressure device and its application to magnetic neutron scattering studies. J Magn Magn Mater. 2007;310:2725–2727. doi: 10.1016/j.jmmm.2006.10.959
  • Osakabe T, Kuwahara K, Kawana D, et al. Pressure-induced antiferromagnetic order in filled skutterudite prfe4p12 studied by single-crystal high-pressure neutron diffraction. J Phys Soc Japan. 2010;79(3):034711. doi: 10.1143/JPSJ.79.034711
  • Goncharenko I, Loubeyre P. Neutron and x-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature. 2005;435:1206–1209. doi: 10.1038/nature03699
  • Goncharenko IN. Neutron diffraction experiments in diamond and sapphire anvil cells. High Press Res. 2004;24:193–204. doi: 10.1080/08957950410001661882
  • Boehler R, Guthrie M, Molaison J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33:546–554. doi: 10.1080/08957959.2013.823197
  • Boehler R, Molaison J, Haberl B. Novel diamond cells for Neutron diffraction using multi-carat CVD anvils. Rev Sci Instrum. 2017;88:083905. doi: 10.1063/1.4997265
  • Haberl B, Dissanayake S, Ye F, et al. Wide-angle diamond cell for neutron scattering. High Press Res. 2017;37:495–506. doi: 10.1080/08957959.2017.1390571
  • Calder S, An L, Boehler R, et al. A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. Rev Sci Instrum. 2018;89:092701. doi: 10.1063/1.5033906
  • Neuefeind J, Feygenson M, Carruth J, et al. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. Nucl Instrum Methods Phys Res B. 2012;287:68–75. doi: 10.1016/j.nimb.2012.05.037
  • Seeger PA, Daemen LL, Larese JZ. Resolution of VISION, a crystal-analyzer spectrometer. Nucl Instrum Methods Phys A. 2009;604:719–728. doi: 10.1016/j.nima.2009.03.204
  • Jamieson JC. Crystal structures at high pressures of metallic modifications of silicon and germanium. Science. 1963;139:762–764. doi: 10.1126/science.139.3556.762
  • Arnold O, Bilheux JC, Borreguero JM, et al. Mantid x Data analysis and visualization package for neutron scattering and μSR experiments. Nucl Instrum Methods Phys Res Sec A. 2014;764:156–166. doi: 10.1016/j.nima.2014.07.029
  • Vohra Y, Ruoff A. Static compression of metals Mo, Pb, and Pt to 272 GPa: comparison with shock data. Phys Rev B. 1990;42:8651–8654. doi: 10.1103/PhysRevB.42.8651
  • Pandya TC, Thakar NA, Bhatt AD. Analysis of equations of state and temperature dependence of thermal expansivity and bulk modulus for silicon. J Phys. 2012;377:012097.
  • Mujica A, Rubio A, Munõz A, et al. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev Mod Phys. 2003;75(3):863–912. doi: 10.1103/RevModPhys.75.863
  • Olijnyk H, Sikka SK, Holzapfel WB. Structural phase transitions in Si and Ge under pressures up to 50 GPa. Phys Lett. 1984;103A(3):137–140. doi: 10.1016/0375-9601(84)90219-6
  • Gupta MC, Ruoff AL. Static compression of silicon in the [100] and in the [111] directions. J Appl Phys. 1980;51(2):1072–1075. doi: 10.1063/1.327714
  • Polk DE. Structural model for amorphous silicon and germanium. J Non Cryst Solids. 1971;5(5):365–376. doi: 10.1016/0022-3093(71)90038-X
  • Roorda S, Martin C, Droui M, et al. Disentangling neighbors and extended range density oscillations in monatomic amorphous semiconductors. Phys Rev Lett. 2012;108:255501. doi: 10.1103/PhysRevLett.108.255501
  • Holmström E, Haberl B, Pakarinen OH, et al. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si. J Non Cryst Solids. 2016;438:26–36. doi: 10.1016/j.jnoncrysol.2016.02.008
  • Fortner J, Lannin JS. Structural relaxation and order in ion-implanted Si and Ge. Phys Rev B. 1988;37(17):10154–10158. doi: 10.1103/PhysRevB.37.10154
  • Haberl B, Liu ACY, Bradby JE, et al. Structural characterization of pressure-induced amorphous silicon. Phys Rev B. 2009;79:155209. doi: 10.1103/PhysRevB.79.155209
  • Laaziri K, Kycia S, Roorda S, et al. High-energy X-ray diffraction study of pure amorphous silicon. Phys Rev B. 1999;60(19):13520–13533. doi: 10.1103/PhysRevB.60.13520
  • Roorda S, Sinke WC, Poate JM, et al. Structural relaxation and defect annihilation in pure amorphous silicon. Phys Rev B. 1991;44(8):3702–3725. doi: 10.1103/PhysRevB.44.3702
  • Imai M, Mitamura T, Yaoita K, et al. Pressure-induced phase transitions of crystalline and amorphous silicon and germanium at low temperatures. High Press Res. 1996;15:167–189. doi: 10.1080/08957959608240470
  • Brazhkin VV, Lyapin AG, Popova SV, et al. Solid-phase disordering of bulk Ge and Si samples under pressure. Pis'ma Zh Eksp Teor Fiz. 1992;56(3):152–156.
  • Brazhkin VV, Lyapin AG, Popova SV, et al. Non-equilibrium phase transitions and amorphization in Si, Si/GaAs, Ge and Ge/GaSb at the decompression of high pressure phases. Phys Rev B. 1995;51(12):7549–7554. doi: 10.1103/PhysRevB.51.7549

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.