Publication Cover
High Pressure Research
An International Journal
Volume 39, 2019 - Issue 4
1,659
Views
8
CrossRef citations to date
0
Altmetric
Articles

Lattice distortion-induced sluggish phase transition in CoCrFeNixAl1-x (x = 0.5, 0.75) high-entropy alloys at high pressures

, &
Pages 533-546 | Received 14 Dec 2018, Accepted 06 Aug 2019, Published online: 16 Aug 2019

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Ye YF, Wang Q, Liu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19:349–362. doi: 10.1016/j.mattod.2015.11.026
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Youssef KM, Zaddach AJ, Niu CN, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett. 2015;3:95–99. doi: 10.1080/21663831.2014.985855
  • Kozelj P, Vrtnik S, Jelen A, et al. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 2014;113:107001. doi: 10.1103/PhysRevLett.113.107001
  • Lee CP, Chen YY, Hsu CY, et al. The effect of Boron on the corrosion resistance of the high entropy alloys Al[sub 0.5]CoCrCuFeNiB[sub x]. J Electrochem Soc. 2007;154:C424. doi: 10.1149/1.2744133
  • Ma D, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 2015;100:90–97. doi: 10.1016/j.actamat.2015.08.050
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-Solution phase formation rules for Multi-component alloys. Adv Eng Mater. 2008;10:534–538. doi: 10.1002/adem.200700240
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 2011;109:103505. doi: 10.1063/1.3587228
  • Ye YF, Wang Q, Lu J, et al. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater. 2015;104:53–55. doi: 10.1016/j.scriptamat.2015.03.023
  • Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells. Rep Prog Phys 2017;80:016101. doi: 10.1088/1361-6633/80/1/016101
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Zhang FX, Zhao SJ, Jin K, et al. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl Phys Lett. 2017;110:011902. doi: 10.1063/1.4973627
  • Tracy CL, Park S, Rittman DR, et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Comm. 2017;8:15634. doi: 10.1038/ncomms15634
  • Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nature Comm. 2017;8:15687. doi: 10.1038/ncomms15687
  • Yu PF, Zhang LJ, Ning JL, et al. Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Mater Lett 2017;196:137–140. doi: 10.1016/j.matlet.2017.02.136
  • Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Comp. 2014;589:143–152. doi: 10.1016/j.jallcom.2013.11.084
  • Jasiewicz K, Cieslak J, Kaprzyk S, et al. Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation. J Alloys Comp. 2015;648:307–312. doi: 10.1016/j.jallcom.2015.06.260
  • Dorogokupets PI, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res 2007;27:431–446. doi: 10.1080/08957950701659700
  • Hammersley AP, Svensson SO, Hanfland M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 1996;14:235–248. doi: 10.1080/08957959608201408
  • Wojdyr M. Fityk: a general-purpose peak fitting program. J Appl Cryst. 2010;43:1126–1128. doi: 10.1107/S0021889810030499
  • Senkov ON, Miracle DB. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull. 2001;36:2183–2198. doi: 10.1016/S0025-5408(01)00715-2
  • Dewaele A, Torrent M, Loubeyre P, et al. Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys Rev B. 2008;78:104102. doi: 10.1103/PhysRevB.78.104102
  • Ming LC, Manghnani MH. Isothermal compression of bcc transition metals to 100 kbar. J Appl Phys. 1978;49:208–212. doi: 10.1063/1.324325
  • Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa. Phys Rev B. 2004;70:094112. doi: 10.1103/PhysRevB.70.094112
  • Hu Q, Guo S, Wang JM, et al. Parametric study of amorphous high-entropy alloys formation from two new perspectives: atomic radius modification and crystalline structure of alloying elements. Sci Rep. 2017;7:39917. doi: 10.1038/srep39917
  • Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM. 2014;66:1984–1992. doi: 10.1007/s11837-014-1085-x
  • Cynn H, Yoo CS, Baer B, et al. Martensitic fcc-to-hcp transformation observed in xenon at high pressure. Phys Rev Lett. 2001;86:4552–4555. doi: 10.1103/PhysRevLett.86.4552
  • Lucas MS, Wilks GB, Mauger L, et al. Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett. 2012;100:251907. doi: 10.1063/1.4730327
  • Maiti S, Steurer W. arXiv:1601.06015.
  • Santodonato LJ, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Comm. 2015;6:5964. doi: 10.1038/ncomms6964
  • Zhang YW, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Comm. 2015;6:8736. doi: 10.1038/ncomms9736
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Sheng HW, Liu HZ, Cheng YQ, et al. Polyamorphism in a metallic glass. Nat Mat. 2007;6:192–197. doi: 10.1038/nmat1839
  • Zeng QS, Li YC, Feng CM, et al. Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure. Proc Natl Acad Sci USA. 2007;104:13565–13568. doi: 10.1073/pnas.0705999104
  • Zeng QS, Ding Y, Mao WL, et al. Origin of pressure-induced Polyamorphism in Ce(75)Al(25) metallic Glass. Phys Rev Lett. 2010;104:105702. doi: 10.1103/PhysRevLett.104.105702
  • Decremps F, Morad G, Garbarino G, et al. Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements. Phys Rev B. 2016;93:054209. doi: 10.1103/PhysRevB.93.054209
  • West AR. Solid state chemistry and its application. New Delhi: Wiley; 1984, p. 367.
  • Owen LR, Pickering EJ, Playford HY, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2017;122:11–18. doi: 10.1016/j.actamat.2016.09.032
  • Oh HS, Ma D, Leyson GP, et al. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy. 2016;18:321. doi: 10.3390/e18090321
  • Song H, Tian F, Hu QM, et al. Local lattice distortion in high-entropy alloys. Phys Rev Mater. 2017;1:023404. doi: 10.1103/PhysRevMaterials.1.023404
  • Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: Wiley; 1954, p. 126.
  • Zhou YJ, Zhang Y, Wang FJ, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1–x solid-solution alloys. Appl Phys Lett. 2008;92:241917. doi: 10.1063/1.2938690
  • Lindemann FA. The calculation of molecular vibration frequencies. Physik Z. 1910;11:609–612.
  • Ye YF, Liu CT, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 2015;94:152–161. doi: 10.1016/j.actamat.2015.04.051
  • Egami T. Atomic level stresses. Prog Mater Sci. 2011;56:637–653. doi: 10.1016/j.pmatsci.2011.01.004
  • Lu K, Li Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phy Rev Lett. 1998;80:4474–4477. doi: 10.1103/PhysRevLett.80.4474
  • Allen GL, Gile WW, Jesser WA. The melting temperature of microcrystals embedded in a matrix. Acta Metall. 1980;28:1695–1701. doi: 10.1016/0001-6160(80)90022-X