218
Views
3
CrossRef citations to date
0
Altmetric
Articles

High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils

&
Pages 3-11 | Received 16 Sep 2019, Accepted 01 Nov 2019, Published online: 14 Nov 2019

References

  • Ito E. Theory and practice-multianvil cells and high-pressure experimental methods. In: Schubert G., Romanowicz B., Dziewonski A., editors. Treatise on Geophysics, Second edition: Mineral Physics. Elsevier; 2015. p. 233–261.
  • Kawai N, Endo S. The generation of ultrahigh hydrostatic pressure by a split sphere apparatus. Rev. Sci. Instrum. 1970;4:425–428.
  • Tateno S, Kuwayama Y, Hirose K, et al. The structure of Fe–Si alloy in Earth’s inner core. Earth Planet. Sci. Lett. 2015;418:11–19. doi: 10.1016/j.epsl.2015.02.008
  • Akahama Y, Kawamura H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J Phys Conf Ser. 2010;215:0102195.
  • Keppler H, Frost D. Introduction to minerals under extreme conditions. In: R Miletich, editor. Mineral Behavior at Extreme conditions. Budapest: Eötvös University Press; 2005. p. 1–30.
  • Ito E, Takahashi E. Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res. 1989;94:10637–10646. doi: 10.1029/JB094iB08p10637
  • Kunimoto T, Irifune T, Tange Y, et al. Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils. High Press Res. 2016;36:1–8. doi: 10.1080/08957959.2016.1148149
  • Ishii T, Yamazaki D, Tsujino N, et al. Pressure generation to 65 GPa in Kawai-type multi-anvil apparatus with tungsten carbide anvils. High Press. Res. 2017;37:507–515. doi: 10.1080/08957959.2017.1375491
  • Yamazaki D, Ito E, Yoshino T, et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. CR Geosci. 2019;351:253–259. doi: 10.1016/j.crte.2018.07.004
  • Ito E, Kubo A. Sintered diamond and research of the Earth’s interior. Rev. High Press. Sci. Technol. 2002;12:104–111. (in Japanese with English abstract). doi: 10.4131/jshpreview.12.104
  • Ringwood A E, Major A, Willis P, et al. Diamond composite tools, Annual Report Research School of Earth Science. ANU. 1989: 38–43.
  • Shimono M, Wada T, Kume S, Ohtaka O. HIP production of diamond compact, In: Vincenzini P (ed.) 2002, Proceedings of the 10th International Ceramic Congress Advances in Sciences and Technology 32, Part C. Techno Srl, CIMTEC pp. 525-532.
  • Toda N. Polycrystalline diamond sintered materials used in high pressure science. Rev. High Press. Sci. Technol. 2018;28:23–27. (in Japanese with English abstract). doi: 10.4131/jshpreview.28.23
  • Bundy F P. Ultrahigh pressure apparatus using cemented tungsten carbide pistons with sintered diamond tips. Rev. Sci. Instrum. 1975;46:1318–1324. doi: 10.1063/1.1134031
  • Ohtani E, Kagawa K, Shimomura O, et al. High-pressure generation by a multiple anvil system with sintered diamond anvils. Rev. Sci. Instrum. 1989;60:922–925. doi: 10.1063/1.1140344
  • Kondo T, Sawamoto H, Yoneda A, et al. Ultrahigh-pressure and high-temperature generation by use of the MA8 system with sintered-diamond anvils. High Temp.-High Press. 1993;25:105–112.
  • Funamori N, Yagi T, Utsumi W, et al. Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000K. J. Geophys. Res. 1996;101:8257–8269. doi: 10.1029/95JB03732
  • Ito E, Kubo A, Katsura T, et al. High-pressure transformation of pyrope (Mg3Al2Si3O12) in a sintered diamond cubic anvil assembly. Geophys. Res. Lett. 1998;25:821–824. doi: 10.1029/98GL00519
  • Kubo A, Ito E, Katsura T, et al. In situ X-ray observation of iron using Kawai-type apparatus equipped with sintered diamond: Absence of β phase up to 44 GPa and 2100 K. Geophys. Res. Lett. 2003;30; doi:10.1029/2002GL016394.
  • Ishii T, Liu Z, Katsura T. A breakthrough in pressure generation by a Kwai-type multi-anvil apparatus with tungsten carbide anvils. Engineering; 2019;5:434–440. doi: 10.1016/j.eng.2019.01.013
  • Katsura T, Funakoshi K, Kubo A, et al. A large-volume high P–T apparatus for in situ X-ray observation, ‘SPEEDMkII’. Phys. Earth Planet Inter. 2004;143–144:497–506. doi: 10.1016/j.pepi.2003.07.025
  • Murakami M, Hirose K, Kawamura K, et al. Post-perovskite transition in MgSiO3. Science. 2004;304:855–858. doi: 10.1126/science.1095932
  • Ito E, Yamazaki D, Yoshino T, et al. Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the Kawai-cell equipped with sintered diamond anvils. Earth Planet. Sci. Lett. 2010;293:84–89. doi: 10.1016/j.epsl.2010.02.023
  • Yamazaki D, Ito E, Yoshino T, et al. Over 1Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys Earth Planet Inter. 2014;228:262–267. doi: 10.1016/j.pepi.2014.01.013
  • Yamazaki D, Tsujino N, Yoneda A, et al. Grain growth of ϵ-iron: Implications to grain size and its evolution in the Earth’s inner core. Earth Planet. Sci. Lett. 2017;459:238–243. doi: 10.1016/j.epsl.2016.11.049
  • Tange Y, Irifune T, Funakoshi K. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Press. Res. 2008;28:245–254. doi: 10.1080/08957950802208936
  • Shatskiy A, Yamazaki D, Morard G, et al. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev. Sci. Instrum. 2009;80:023907. doi: 10.1063/1.3084209
  • Xie L, Yoneda A, Yoshino T, et al. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus. Rev. Sci. Instrum. 2017;88:093904. doi: 10.1063/1.4993959
  • Arimoto T, Irifune T, Nishi M, et al. Phase relations of MgSiO3–FeSiO3 system up to 64 GPa and 2300 K using multianvil apparatus with sintered diamond anvils. Phys. Earth Planet. Sci. 2019;295:106297. doi: 10.1016/j.pepi.2019.106297
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;540:250–253. doi: 10.1038/nature13381
  • Liu A Y, Cohen M L. Prediction of new low compressibility solids. Science. 1989;245:841–842. doi: 10.1126/science.245.4920.841
  • Irifune T, Naka H, Sanehira T, et al. In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Phys. Chem. Miner. 2002;29:645–654. doi: 10.1007/s00269-002-0275-1
  • Ito E, Katsura T, Aizawa Y, et al. High-pressure generation in the Kawai-type apparatus equipped with sintered diamond anvils: application to the wurtzite–rocksalt transformation in GaN, in Advances in High-Pressure Technology for Geophysical Applications, 2005; J. Chen, Y. Wang, T. S. Duffy, G. Shen, and L. F. Dobrzhinetskaya, eds., Elsevier, Amsterdam, pp. 451–460.
  • Tateno S, Hirose K, Sata N, et al. Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet. Sci. Lett. 2009;277:130–136. doi: 10.1016/j.epsl.2008.10.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.