311
Views
7
CrossRef citations to date
0
Altmetric
Articles

Data-driven exploration for pressure-induced superconductors using diamond anvil cell with boron-doped diamond electrodes and undoped diamond insulating layer

, , , , , , , , , , , , , & show all
Pages 22-34 | Received 30 Aug 2019, Accepted 08 Nov 2019, Published online: 03 Dec 2019

References

  • Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z Phys B. 1986;64:189–193. doi: 10.1007/BF01303701
  • Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05−0.12) withTc= 26 K. J Am Chem Soc. 2008;130:3296. doi: 10.1021/ja800073m
  • Drozdov AP, Eremets MI, Troyan IA, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015;525:73–76. doi: 10.1038/nature14964
  • Duan D, Liu Y, Tian F, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci Rep. 2014;4:6968. doi: 10.1038/srep06968
  • Einaga M, Sakata M, Ishikawa T, et al. Crystal structure of the superconducting phase of sulfur hydride. Nat Phys. 2016;12:835–838. doi: 10.1038/nphys3760
  • Mozaffari S, Sun D, Minkov VS, et al. Superconducting phase diagram of H3S under high magnetic fields. Nat Commun. 2019;10:2522. doi: 10.1038/s41467-019-10552-y
  • Drozdov AP, Kong PP, Minkov VS, et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature. 2019;569:528–531. doi: 10.1038/s41586-019-1201-8
  • Somayazulu M, Ahart M, Mishra AK, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys Rev Lett. 2019;122:027001. doi: 10.1103/PhysRevLett.122.027001
  • Liu H, Naumov II, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. PNAS. 2017;114:6990–6995. doi: 10.1073/pnas.1704505114
  • Ishikawa T, Oda T, Suzuki N, et al. Review on distorted face-centered cubic phase in yttrium via genetic algorithm. High Pressure Res. 2015;35:37. doi: 10.1080/08957959.2014.983501
  • Ishikawa T, Nakanishi A, Shimizu K, et al. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Sci Rep. 2016;6:23160. doi: 10.1038/srep23160
  • Kiyohara S, Oda H, Miyata T, et al. Prediction of interface structures and energies via virtual screening. Sci Adv. 2016;2:e1600746. doi: 10.1126/sciadv.1600746
  • Seko A, Togo A, Hayashi H, et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901. doi: 10.1103/PhysRevLett.115.205901
  • Inoshita T, Jeong S, Hamada N, et al. Exploration for two-dimensional electrides via database screening and ab initio calculation. Phys Rev. 2014;X4:031023. doi: 10.1103/PhysRevX.4.031023
  • Hinuma Y, Hatakeyama T, Kumagai Y, et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat Commun. 2016;7:11962. doi: 10.1038/ncomms11962
  • Matsumoto R, Sasama Y, Fujioka M, et al. Note: novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes. Rev Sci Instrum. 2016;87:076103. doi: 10.1063/1.4959154
  • Matsumoto R, Irifune T, Tanaka M, et al. Diamond anvil cell using metallic diamond electrodes. Jpn J Appl Phys. 2017;56:05FC01. doi: 10.7567/JJAP.56.05FC01
  • Matsumoto R, Yamashita A, Hara H, et al. Diamond anvil cells using boron-doped diamond electrodes covered with undoped diamond insulating layer. Appl Phys Express. 2018;11:053101. doi: 10.7567/APEX.11.053101
  • Matsumoto R, Hara H, Tanaka H, et al. Pressure-induced superconductivity in sulfur-doped SnSe single crystal using boron-doped diamond electrode-prefabricated diamond anvil cell. J Phys Soc Jpn. 2018;87:124706. doi: 10.7566/JPSJ.87.124706
  • Matsumoto R, Hou Z, Hara H, et al. Two pressure-induced superconducting transitions in SnBi2Se4 explored by data-driven materials search: new approach to developing novel functional materials including thermoelectric and superconducting materials. Appl Phys Express. 2018;11:093101. doi: 10.7567/APEX.11.093101
  • Matsumoto R, Hou Z, Nagao M, et al. Data-driven exploration of new pressure-induced superconductivity in PbBi2Te4. Sci Technol Adv Mater. 2018;19:909–916. doi: 10.1080/14686996.2018.1548885
  • Xu Y, Yamazaki M, Villars P. Inorganic materials database for exploring the nature of material. Jpn J Appl Phys. 2011;50:11RH02. doi: 10.7567/JJAP.50.11RH02
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Rowe DM. CRC handbook of thermoelectrics. Florida: CRC Press; 2010.
  • Kuroki K, Arita R. ‘Pudding mold’ band drives large thermopower in NaxCoO2. J Phys Soc Jpn. 2007;76:083707. doi: 10.1143/JPSJ.76.083707
  • Kopnin NB, Heikkilä TT, Volovik GE. High-temperature surface superconductivity in topological flat-band systems. Phys Rev B. 2011;83:220503. doi: 10.1103/PhysRevB.83.220503
  • Mori K, Usui H, Sakakibara H, et al. Theoretical expectation of large seebeck effect in PtAs2 and PtP2. J Phys Soc Jpn. 2014;83:023706. doi: 10.7566/JPSJ.83.023706
  • Lie SG, Garbotte JP. Dependence of Tc on electronic density of states. Solid State Commun. 1978;26:511–514. doi: 10.1016/0038-1098(78)91299-1
  • Abrikosov AA. Theory of high-Tc superconducting cuprates based on experimental evidence. Phys C. 2000;341-348:97–102. doi: 10.1016/S0921-4534(00)00399-3
  • Sano W, Koretsune T, Tadano T, et al. Effect of Van Hove singularities on high-Tc superconductivity in H3S. Phys Rev B. 2016;93:094525. doi: 10.1103/PhysRevB.93.094525
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Takano Y, Nagao M, Takenouchi T, et al. Superconductivity in polycrystalline diamond thin films. Diam Relat Mater. 2005;14:1936–1938. doi: 10.1016/j.diamond.2005.08.014
  • Yokoya T, Nakamura T, Matsushita T, et al. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature. 2005;438:647–650. doi: 10.1038/nature04278
  • Takano Y, Takenouchi T, Ishii S, et al. Superconducting properties of homoepitaxial CVD diamond. Diam Relat Mater. 2007;16:911–914. doi: 10.1016/j.diamond.2007.01.027
  • Abrikosov AA, Campuzano JC, Gofron K. Experimentally observed extended saddle point singularity in the energy spectrum of YBa2Cu3O6.9 and YBa2Cu4O8 and some of the consequences. Phys C. 1993;214:73–79. doi: 10.1016/0921-4534(93)90109-4
  • Newns DM, Tsuei CC, Pattniak PC. Van Hove scenario for d-wave superconductivity in cuprates. Phys Rev B. 1995;52:13611. doi: 10.1103/PhysRevB.52.13611
  • Kuroda K, Miyahara H, Ye M, et al. Experimental verification of PbBi2Te4 as a 3D topological insulator. Phys Rev Lett. 2012;108:206803. doi: 10.1103/PhysRevLett.108.206803
  • Matsumoto R, Hara H, Hou Z, et al. arXiv:1902.09770 (2019).
  • Song P, Matsumoto R, Hou Z, et al. arXiv:1907.02381 (2019).
  • Matsumoto R, Song P, Adachi S, et al. Pressure-induced superconductivity in tin sulfide. Phys Rev B. 2019;99:184502. doi: 10.1103/PhysRevB.99.184502

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.