378
Views
4
CrossRef citations to date
0
Altmetric
Articles

Strength and plastic deformation of polycrystalline diamond composites

, , , , , , , & show all
Pages 35-53 | Received 01 Sep 2019, Accepted 17 Nov 2019, Published online: 27 Nov 2019

References

  • Field JE. The mechanical and strength properties of diamond. Rep Prog Phys. 2012;75(12):126505. doi: 10.1088/0034-4885/75/12/126505
  • Stoneham AM. Thinking about diamond. MRS Proc. 2006;956:0956-J01-01. doi: 10.1557/PROC-0956-J01-01
  • Boland JN, Li XS. Microstructural characterisation and wear behaviour of diamond composite materials. Materials. 2010;3(2):1390. doi: 10.3390/ma3021390
  • Scott TA. The influence of microstructure on the mechanical properties of polycrystalline diamond: a literature review. Adv Appl Ceram. 2018;117(3):161–176. doi: 10.1080/17436753.2017.1389462
  • Miyoshi K. Structures and mechanical properties of natural and synthetic diamonds. Chapter 8, in NASA/TM – 1998-107249. 1998, Hanover (MD): NASA. p. 26.
  • Olson DW, Brioche AB. Diamond, industrial (advance release). In: U.S. Geological Survey yearbook – 2015. Washington (DC): U.S. Geologiocal Survey; 2018. p. 21.1–21.13.
  • Belnap D, Griffo A. Homogeneous and structured PCD/WC-Co materials for drilling. Diam Relat Mater. 2004;13(10):1914–1922. doi: 10.1016/j.diamond.2004.06.013
  • McNamara D, Alveen P, Carolan D, et al. Fracture toughness evaluation of polycrystalline diamond as a function of microstructure. Eng Fract Mech. 2015;143:1–16. doi: 10.1016/j.engfracmech.2015.06.008
  • Ohtani E, Kagawa N, Shimomura O, et al. High pressure generation by a multiple anvil system with sintered diamond anvils. Rev Sci Instrum. 1989;60:922–925. doi: 10.1063/1.1140344
  • Ito E, Katsura T, Yamazaki D, et al. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes. Phys Earth Planet Inter. 2009;174(1–4):264–269. doi: 10.1016/j.pepi.2008.11.007
  • Langenhorst F, Poirier J-P, Frost DJ. TEM observations of microscopic inclusions in synthetic diamond. J Mater Sci. 2004;39(5):1865–1867. doi: 10.1023/B:JMSC.0000016205.14981.11
  • Liu J, Zhan G, Wang Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure. Appl Phys Lett. 2018;112(6):061901. doi: 10.1063/1.5016110
  • Humble P, Hannink RHJ. Plastic deformation of diamond at room temperature. Nature. 1978;273:37. doi: 10.1038/273037a0
  • Brookes EJ, Greenwood P, Xing G. The plastic deformation and strain-induced fracture of natural and synthetic diamond. Diam Relat Mater. 1999;8(8):1536–1539. doi: 10.1016/S0925-9635(99)00080-1
  • Evans T. Diamonds. Contemp Phys. 1976;17:45–70. doi: 10.1080/00107517608210841
  • Weidner DJ, Wang Y, Vaughan MT. Strength of diamond. Science. 1994;266:419–422. doi: 10.1126/science.266.5184.419
  • Yu X, Raterron P, Zhang J, et al. Constitutive Law and flow mechanism in diamond deformation. Sci Rep. 2012;2:876. doi: 10.1038/srep00876
  • Wang Y, Durham WB, Getting IC, et al. The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev Sci Instrum. 2003;74:3002–3011. doi: 10.1063/1.1570948
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Gasc J, Wang Y, Yu T, et al. High-pressure, high-temperature plastic deformation of sintered diamonds. Diam Relat Mater. 2015;59:95–103. doi: 10.1016/j.diamond.2015.09.001
  • Singh A. The lattice strain in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys. 1993;73:4278–4286. doi: 10.1063/1.352809
  • Brookes CA. Plastic deformation and anisotropy in the hardness of diamond. Nature. 1970;228:660. doi: 10.1038/228660a0
  • Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46(2):544–549. doi: 10.1107/S0021889813003531
  • Cadeville MC, Lapierre MF. Etude aux rayons X de la solution solide cobalt-carbone. Scr Metall. 1972;6(5):399–404. doi: 10.1016/0036-9748(72)90211-6
  • Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-W-C system at 1150°C. Met Sci. 1978;12(2):83–94. doi: 10.1179/msc.1978.12.2.83
  • Murakami D, Okamura K, Meguro K, et al. The technical trend and the future of super hard matertail cutting tools. J Soc Manuf Engneers Jpn. 2014;3:1–5.
  • Nishiyama N, Wang Y, Rivers ML, et al. Rheology of ε-iron up to 19 GPa and 600 K in the D-DIA. Geophys Res Lett. 2007;35:L23304.
  • Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015;35(3):223–230. doi: 10.1080/08957959.2015.1059835
  • Merkel S, Hilairet N. Multifit/polydefix: a framework for the analysis of polycrystal deformation using X-rays. J Appl Crystallogr. 2015;48(4):1307–1313. doi: 10.1107/S1600576715010390
  • Hammersley AP, Svensson SO, Hanfland M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pres Res. 1996;14:235–248. doi: 10.1080/08957959608201408
  • McSkimin HJ, Andreatch Jr P. Elastic modulis of diamond as a function of pressure and temperature. J Appl Phsyics. 1972;43:2944–2948. doi: 10.1063/1.1661636
  • Zouboulis ES, Grimsditch M, Ramdas AK, et al. Temperature dependence of the elastic moduli of diamond: a Brillouin-scattering study. Phys Rev B. 1998;57:2889–2896. doi: 10.1103/PhysRevB.57.2889
  • Chen J, Li L, Yu T, et al. Does Reuss and Voigt bounds really bound in high-pressure rheology experiments? J Phys Condens Matter. 2006;18:S1049–S1059. doi: 10.1088/0953-8984/18/25/S11
  • Kumazawa M. The elastic constant of polycrystalline rocks and nonelastic behavior inherent to them. J Geophys Res (1896–1977). 1969;74(22):5311–5320. doi: 10.1029/JB074i022p05311
  • Wang Y, Liu ZTY, Khare SV, et al. Thermal equation of state of silicon carbide. Appl Phys Lett. 2016;108(6):061906. doi: 10.1063/1.4941797
  • Zhuravlev KK, Goncharov AF, Tkachev SN, et al. Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: implication for a primary pressure scale. J Appl Phys. 2013;113(11):113503. doi: 10.1063/1.4795348
  • Li Z, Bradt RC. The single-crystal elastic constants of cubic (3C) SiC to 1000° C. J Mater Sci. 1987;22(7):2557–2559. doi: 10.1007/BF01082145
  • Wang Y, Hilairet N, Nishiyama N, et al. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: implications for multiphase rheology of the lower mantle. Geochem Geophys Geosyst. 2013;14(9):3389–3408. doi: 10.1002/ggge.20200
  • Skinner BJ. The thermal expansions of thoria, periclase and diamond. Am Mineral. 1957;42:39–55.
  • Hollomon JH. Tensile deformation. Trans Metall Soc AIME. 1945;162:268–290.
  • Evans T, Wild RK. Plastic bending of diamond plates. Philos Mag. 1965;12(117):479–489. doi: 10.1080/14786436508218894
  • Wei Y, Wu J, Yin H, et al. The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater. 2012;11(9):759–763. doi: 10.1038/nmat3370
  • Mussi A, Eyidi D, Shiryaev A, et al. TEM observations of dislocations in plastically deformed diamond. Physica Status Solidi (a). 2013;210(1):191–194. doi: 10.1002/pssa.201200483
  • Shiryaev AA, Frost DJ, Langenhorst F. Impurity diffusion and microstructure in diamonds deformed at high pressures and temperatures. Diam Relat Mater. 2007;16(3):503–511. doi: 10.1016/j.diamond.2006.10.001
  • Feng X, Xiao J, Wen B, et al. Temperature-dependent hardness of diamond-structured covalent materials. Condens Matter Mater Sci. 2019. arXiv:1909.11032.
  • Yin L-W, Zou Z-D, Li M-S, et al. Impurities identification in a synthetic diamond by transmission electron microscopy. Diam Relat Mater. 2000;9(12):2006–2009. doi: 10.1016/S0925-9635(00)00355-1
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253. doi: 10.1038/nature13381
  • Baker DR, Paul G, Sreenivasan S, et al. Continuum percolation threshold for interpenetrating squares and cubes. Phys Rev E. 2002;66(4):046136. doi: 10.1103/PhysRevE.66.046136
  • Shinoda Y, Nagano T, Wakai F. Fabrication of nanograined silicon carbide by ultrahigh-pressure hot isostatic pressing. J Am Ceram Soc. 1999;82(3):771–773. doi: 10.1111/j.1151-2916.1999.tb01833.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.