330
Views
7
CrossRef citations to date
0
Altmetric
Articles

High pressure atomic structure of Zr–Cu metallic glass via EXAFS spectroscopy and molecular dynamics simulations

ORCID Icon, , , , , & ORCID Icon show all
Pages 54-64 | Received 31 Aug 2019, Accepted 08 Nov 2019, Published online: 27 Nov 2019

References

  • Klement P, Willens W, and Duwez RH. Non-crystalline structure in solidified gold-silicon alloys. Nature. 1960;187:869–870. doi: 10.1038/187869b0
  • Greer AL. Metallic glasses. Science. 1995;267:1947–1953. doi: 10.1126/science.267.5206.1947
  • Sheng HW, Luo WK, Alamgirand FM, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature. 2006;439:419–425. doi: 10.1038/nature04421
  • Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci. 2011;56(4):379–473. doi: 10.1016/j.pmatsci.2010.12.002
  • Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473–488. doi: 10.1080/00107516908204405
  • Georgarakis K, Hennet L, Evangelakis GA, et al. Probing the structure of a liquid metal during vitrification. Acta Mater. Apr. 2015;87:174–186. doi: 10.1016/j.actamat.2015.01.005
  • Yavari AR. A new order for metallic glasses. Nature. 2006;439:405–406. doi: 10.1038/439405a
  • Kelton KF, Greer AL. Nucleation in condensed matter applications in materials and biology. Amsterdam: British Library Cataloguing in Publication Data; 2010.
  • Mao HK, Chen XJ, Ding Y, et al. Solids, liquids, and gases under high pressure. Rev Mod Phys. 2018;90(1):15007. doi: 10.1103/RevModPhys.90.015007
  • Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science. 2011;332(6036):1404–1406. doi: 10.1126/science.1200324
  • Wu M, Tse JS, Wang SY, et al. Origin of pressure-induced crystallization of Ce75Al25 metallic glass. Nat. Commun. 2015;6:6493. doi: 10.1038/ncomms7493
  • Dziegielewski P, Antonowicz J, Pietnoczka A, et al. Pressure-induced transformations in Ce–Al metallic glasses: the role of stiffness of interatomic pairs. J Alloys Compd. 2018;757:484–488. doi: 10.1016/j.jallcom.2018.05.077
  • Sheng HW, Liu HZ, Cheng YQ, et al. Polyamorphism in a metallic glass. Nat Mater. 2007;6:192. doi: 10.1038/nmat1839
  • Du Q, Liu X-J, Zeng Q, et al. Polyamorphic transition in a transition metal based metallic glass under high pressure. Phys Rev B. 2019;99(1):14208. doi: 10.1103/PhysRevB.99.014208
  • Wu M, Lou H, John ST, et al. Pressure-induced polyamorphism in a main-group metallic glass. Phys Rev B. 2016;94(5):1–5. doi: 10.1103/PhysRevB.94.054201
  • Li G, Wang YY, Liaw PK, et al. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses. Phys Rev Lett. 2012;109(12):1–5. doi: 10.1103/PhysRevLett.109.125501
  • Jin HJ, Gu XJ, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses. Acta Mater. 2003;51(20):6219–6231. doi: 10.1016/S1359-6454(03)00445-2
  • Kang H, Ye X, Wang J, et al. Abnormal bonding ways in Zr50Cu50 metallic glass under high pressures. J Alloys Compd. 2019;780:512–517. doi: 10.1016/j.jallcom.2018.12.004
  • Antonowicz J, Pietnoczka A, Evangelakis GA, et al. Atomic-level mechanism of elastic deformation in the Zr-Cu metallic glass. Phys Rev B. 2016;93(14):144115. doi: 10.1103/PhysRevB.93.144115
  • Waseda Y. The structure of non-crystalline materials: liquids and amorphous solids. New York and London: McGraw-Hill International Book Co.; 1980.
  • Takeshi E, Billinge SJL. Underneath the Bragg peaks, vol. 16. Oxford and Amsterdam: Pergamon; 2012.
  • Okabe A. Definitions and Basic Properties of Voronoi Diagrams. In: Okabe A, editor. Spatial tessellations : concepts and applications of voronoi diagrams. 2nd ed. Chichester and Toronto: John Wiley Sons; 2000. p. 43–106.
  • Hafner J. Bond-angle distribution functions in metallic glasses. Le J Phys Colloq. 1985;46(C9):C9-69–C9-78.
  • Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem. 1987;91(19):4950–4963. doi: 10.1021/j100303a014
  • Rehr JJ, Albers RC. Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys. 2000;72:621–654. doi: 10.1103/RevModPhys.72.621
  • Bunker G. Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge: Cambridge University Press; 2010.
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Ishimatsu N, Matsumoto K, Maruyama H, et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J Synchrotron Radiat. 2012;19(5):768–772. doi: 10.1107/S0909049512026088
  • Chen HS, Waseda Y. Structure of glassy Zr–Cu and Nb–Ni alloys. Phys Stat Solid a. 1979;51:593–599. doi: 10.1002/pssa.2210510235
  • Buschow KHJ. Thermal stability of amorphous Zr–Cu alloys. J Appl Phys. 1981;52:3319–3323. doi: 10.1063/1.329152
  • Mattern N, Schöps A, Kühn U, et al. Structural behavior of CuxZr100−x metallic glass (x = 35−70). J Non Cryst Solids. 2008;354(10–11):1054–1060. doi: 10.1016/j.jnoncrysol.2007.08.035
  • Georgarakis K, Yavari AR, Louzguine-Luzgin DV, et al. Atomic structure of Zr–Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission. Appl Phys Lett. 2009;94(19):191912. doi: 10.1063/1.3136428
  • Lagogianni AE, Almyras G, Lekka CE, et al. Structural characteristics of CuxZr100−x metallic glasses by molecular dynamics simulations. J Alloys Compd. 2009;483(1–2):658–661. doi: 10.1016/j.jallcom.2008.07.211
  • Mathon O, Beteva A, Borrel J, et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European synchrotron radiation facility: the general-purpose EXAFS bending-magnet beamline BM23. J Synchrotron Radiat. 2015;22(6):1548–1554. doi: 10.1107/S1600577515017786
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29(12):6443–6453. doi: 10.1103/PhysRevB.29.6443
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool. Modell Simul Mater Sci Eng. 2010;18(1):015012. doi: 10.1088/0965-0393/18/1/015012
  • Rehr JJ, Kas JJ, Vila FD, et al. Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys. 2010;12(21):5503–5513. doi: 10.1039/b926434e
  • Fukunaga T, Itoh K, Otomo T, et al. Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses. Intermetallics. 2006;14(8–9):893–897. doi: 10.1016/j.intermet.2006.01.006
  • Newville M. {\it IFEFFIT} : interactive XAFS analysis and {\it FEFF} fitting. J Synchrotron Radiat. 2001;8:322–324. doi: 10.1107/S0909049500016964
  • Antonowicz J, Pietnoczka A, Zalewski W, et al. Local atomic structure of Zr–Cu and Zr–Cu–Al amorphous alloys investigated by EXAFS method. J. Alloys Compd. 2011;509(Suppl. 1):S34–S37. doi: 10.1016/j.jallcom.2010.10.105
  • Yavari AR, Moulec AL, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 2005;53(6):1611–1619. doi: 10.1016/j.actamat.2004.12.011
  • Ma D, Stoica AD, Wang X-L, et al. Elastic moduli inheritance and the weakest link in bulk metallic glasses. Phys Rev Lett. 2012;108(8):85501. doi: 10.1103/PhysRevLett.108.085501
  • Wang WH. Family traits. Nat Mater. 2012;11:275–276. doi: 10.1038/nmat3277
  • Poulsen HF, Wert JA, Neuefeind J, et al. Measuring strain distributions in amorphous materials. Nat Mater. 2005;4:33–36. doi: 10.1038/nmat1266
  • Hufnagel TC, Ott RT, Almer J. Structural aspects of elastic deformation of a metallic glass. Phys Rev B. 2006;73(6):64204. doi: 10.1103/PhysRevB.73.064204
  • Dmowski W, Iwashita T, Chuang C-P, et al. Elastic heterogeneity in metallic glasses. Phys Rev Lett. 2010;105(20):205502. doi: 10.1103/PhysRevLett.105.205502
  • Plummer JD, Todd I. Isomechanical groups in bulk metallic glasses. Philos Mag. 2012;92(23):2894–2910. doi: 10.1080/14786435.2012.682172
  • Vempati UK, Valavala PK, Falk ML, et al. Length-scale dependence of elastic strain from scattering measurements in metallic glasses. Phys Rev B. 2012;85(21):214201. doi: 10.1103/PhysRevB.85.214201
  • Frank FC. Supercooling of liquids. Proc R Soc Lond A Math Phys Sci. 1952;215:43–46.
  • Hirata A, Kang LJ, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses. Science. 2013;341(6144):376–379. doi: 10.1126/science.1232450
  • Antonowicz J, Pietnoczka A, Drobiazg T, et al. Icosahedral order in Cu–Zr amorphous alloys studied by means of X-ray absorption fine structure and molecular dynamics simulations. Philos Mag. 2012;92(15):1865–1875. doi: 10.1080/14786435.2012.659008
  • Almyras GA, Lekka CE, Mattern N, et al. On the microstructure of the Cu65Zr35 and Cu35Zr65 metallic glasses. Scr Mater. Jan. 2010;62(1):33–36. doi: 10.1016/j.scriptamat.2009.09.019
  • Spaepen F. Five-fold symmetry in liquids. Nature. 2000;408:781–782. doi: 10.1038/35048652

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.