159
Views
4
CrossRef citations to date
0
Altmetric
Articles

Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline

, , , , ORCID Icon, ORCID Icon & show all
Pages 82-87 | Received 05 Sep 2019, Accepted 31 Oct 2019, Published online: 13 Jan 2020

References

  • Fontaine A, Baudelet F, Dartyge E, et al. Two time-dependent, focus-dependent experiments using the energy-dispersive spectrometer at LURE. Rev Sci Instrum. 1992;63:960–965. doi: 10.1063/1.1143791
  • Blank H, Neff B, Steil S, et al. A new energy dispersive X-ray monochromator for soft X-ray applications. Rev Sci Instrum. 1992;63:1334–1337. doi: 10.1063/1.1143062
  • D'Acapito F, Boscherini F, Marcelli A, et al. Dispersive EXAFS apparatus at Frascati. Rev Sci Instrum. 1992;63:899–901. doi: 10.1063/1.1143771
  • Dent AJ, Wells MP, Farrow RC, et al. Combined energy dispersive EXAFS and X-ray diffraction. Rev Sci Instrum. 1992;63:903–906. doi: 10.1063/1.1143774
  • Mastelaro VR, Zanotto ED. X-ray absorption fine structure (XAFS) studies of oxide glasses – a 45-year overview. Materials. 2018;11:204. doi: 10.3390/ma11020204
  • Mino L, Borfecchia E, Segura-Ruiz J, et al. Materials characterization by synchrotron X-ray microprobes and nanoprobes. Rev Mod Phys. 2018;90:025007. doi: 10.1103/RevModPhys.90.025007
  • Di Cicco A. X-ray absorption spectroscopy investigations of disordered matter. Rad Phys Chem. 2018. DOI:10.1016/j.radphyschem.2018.11.031
  • Baudelet F, Kong Q, Nataf L, et al. ODE: a new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Pressure Res. 2011;31:136–139. doi: 10.1080/08957959.2010.532794
  • Baudelet F, Nataf L, Torchio R. New scientific opportunities for high pressure research by energy-dispersive XMCD. High Pressure Res. 2016;36:429–444. doi: 10.1080/08957959.2016.1211274
  • Tetsuo I, Ayako K, Shizue S, et al. Materials: ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600.
  • Ishimatsu N, Matsumoto K, Maruyama H, et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J Synchrotron Rad. 2012;19:768–772. doi: 10.1107/S0909049512026088
  • Oliéric V, Ennifar E, Meents A, et al. Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography. Acta Crystallogr D. 2007;63:759–768. doi: 10.1107/S0907444907019580
  • Holton JM. A beginner's guide to radiation damage. J Synchrotron Rad. 2009;16:133–142. doi: 10.1107/S0909049509004361
  • Kubin M, Kern J, Guo M, et al. X-ray-induced sample damage at the Mn L-edge: a case study for soft X-ray spectroscopy of transition metal complexes in solution. Phys Chem Chem Phys. 2018;20:16817–16827. doi: 10.1039/C8CP03094D
  • Nienaber KH, Pushie MJ, Cotelesage JJH, et al. Cryoprotectants severely exacerbate X-ray-induced photoreduction. J Phys Chem Lett. 2018;9:540–544. doi: 10.1021/acs.jpclett.7b03111
  • Jonah CD. A short history of the radiation chemistry of water. Radiat Res. 1995;144:141–147. doi: 10.2307/3579253
  • Le Caer S. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 2011;3:235–253. doi: 10.3390/w3010235
  • Joshi S, Patil S, Iyer V, et al. Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater. 1998;10:1135–1144. doi: 10.1016/S0965-9773(98)00153-6
  • Lee HJ, Je JH, Hwu Y, et al. Synchrotron X-ray induced solution precipitation of nanoparticles. Nucl Instrum Methods B. 2003;199:342–347. doi: 10.1016/S0168-583X(02)01561-6
  • Oyanagi H, Orimoto Y, Hayakawa K, et al. Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci Rep. 2014;4:7199. doi: 10.1038/srep07199
  • Kuzmin A, Anspoks A, Nataf L, et al. Influence of pressure and temperature on X-ray induced photoreduction of nanocrystalline CuO. Latvian J Phys Tech Sci. 2018;55:13–19. doi: 10.2478/lpts-2018-0039
  • Corbett MC, Latimer MJ, Poulos TL, et al. Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D. 2007;63:951–960. doi: 10.1107/S0907444907035160
  • Meents A, Gutmann S, Wagner A, et al. Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc Natl Acad Sci USA. 2010;107:1094–1099. doi: 10.1073/pnas.0905481107
  • Timoshenko J, Kuzmin A, Purans J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J Phys: Condens Matter. 2014;26:055401.
  • Jonane I, Anspoks A, Nataf L, et al. Pressure-induced structural changes in α-MoO3 probed by X-ray absorption spectroscopy. IOP Conf Series: Mater Sci Eng. 2019;503:012018. doi: 10.1088/1757-899X/503/1/012018
  • Liu D, Lei W, Hao J, et al. High-pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J Appl Phys. 2009;105:023513. doi: 10.1063/1.3056049
  • Åsbrink S, Kihlborg L, Malinowski M. High-pressure single-crystal X-ray diffraction studies of MoO3. I. Lattice parameters up to 7.4 GPa. J Appl Crystallogr. 1988;21:960–962. doi: 10.1107/S0021889888008271

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.