770
Views
4
CrossRef citations to date
0
Altmetric
Articles

Nano-polycrystalline diamond synthesized through the decomposition of stearic acid

&
Pages 162-174 | Received 23 Sep 2019, Accepted 16 Dec 2019, Published online: 20 Jan 2020

References

  • Irifune T, Kurio A, Sakamoto S, et al. Materials: ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Sumiya H, Irifune T. Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion. Diam Relat Mater. 2004;13(10):1771–1776. doi: 10.1016/j.diamond.2004.03.002
  • Ohfuji H, Kuroki K. Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure. J Mineral Petrol Sci. 2009;104(5):307–312. doi: 10.2465/jmps.090622i
  • Ohfuji H, Okimoto S, Kunimoto T, et al. Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion. Phys Chem Miner. 2012;39(7):543–552. doi: 10.1007/s00269-012-0510-3
  • Irifune T, Kurio A, Sakamoto S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter. 2004;143-144:593–600. doi: 10.1016/j.pepi.2003.06.004
  • Isobe F, Irifune T, Shinmei T, et al. Lowering P, T boundary for synthesis of pure nano-polycrystalline diamond. J Phys Conf Ser. 2010;215:012136. doi: 10.1088/1742-6596/215/1/012136
  • Sumiya H, Yusa H, Inoue T, et al. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press Res. 2006;26(2):63–69. doi: 10.1080/08957950600765863
  • Le Guillou C, Brunet F, Irifune T, et al. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon NY. 2007;45(3):636–648. doi: 10.1016/j.carbon.2006.10.005
  • Onodera A, Suito K, Morigami Y. High pressure synthesis of diamond from organic compounds. Proc Jpn Acad Ser B. 1992;68(10):167–171. doi: 10.2183/pjab.68.167
  • Voronov OA, Rakhmanina AV. Kinetics of adamantane carbonization at 8 GPa. Inorg Mater. 1997;33(4):375–378.
  • Ekimov EA, Kudryavtsev OS, Mordvinova NE, et al. High pressure synthesis of nanodiamonds from adamantane: myth or reality? Chem Nano Mat. 2018;4(3):269–273.
  • Litasov KD, Shatskiy A, Ohtani E. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3–16 GPa. Earth Planet Sci Lett. 2014;391:87–99. doi: 10.1016/j.epsl.2014.01.033
  • Yamaoka S, Kumar MS, Kanda H, et al. Formation of diamond from CaCO3 in a reduced C–O–H fluid at HP–HT. Diam Relat Mater. 2002;11(8):1496–1504. doi: 10.1016/S0925-9635(02)00053-5
  • Ohfuji H, Okada T, Yagi T, et al. Application of nano-polycrystalline diamond to laser-heated diamond anvil cell experiments. High Press Res. 2010;30(1):142–150. doi: 10.1080/08957951003600764
  • Sumiya H, Harano K, Arimoto K, et al. Optical characteristics of nano-polycrystalline diamond synthesized directly from graphite under high pressure and high temperature. Jpn J Appl Phys. 2009;48(12R):120206. doi: 10.1143/JJAP.48.120206
  • Sumiya H, Irifune T, Kurio A, et al. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J Mater Sci. 2004;39(2):445–450. doi: 10.1023/B:JMSC.0000011496.15996.44
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J Mater Res. 2007;22(8):2345–2351. doi: 10.1557/jmr.2007.0295
  • Solopova NA, Dubrovinsky L, Spivak AV, et al. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Miner. 2015;42(1):73–81. doi: 10.1007/s00269-014-0701-1
  • Lobanov SS, Chen PN, Chen XJ, et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat Commun. 2013;4:2446. doi: 10.1038/ncomms3446
  • Lin JF, Militzer B, Struzhkin VV, et al. High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K. J Chem Phys. 2004;121(17):8423–8427. doi: 10.1063/1.1784438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.