380
Views
16
CrossRef citations to date
0
Altmetric
Articles

Developments of nano-polycrystalline diamond anvil cells for neutron diffraction experiments

ORCID Icon, ORCID Icon, , , , , ORCID Icon & show all
Pages 184-193 | Received 25 Aug 2019, Accepted 19 Nov 2019, Published online: 17 Feb 2020

References

  • Einaga M, Sakata M, Ishikawa T, et al. Crystal structure of the superconducting phase of sulfur hydride. Nat Phys. 2016;12:835–838. doi: 10.1038/nphys3760
  • Drozdov AP, Eremets MI, Troyan IA, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature. 2015;525:73–76. doi: 10.1038/nature14964
  • Drozdov AP, Kong PP, Minkov VS, et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature. 2019;569:528–531. doi: 10.1038/s41586-019-1201-8
  • Somayazulu M, Ahart M, Mishra AK, et al. Evidence for Superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys Rev Lett. 2019;122:027001. doi: 10.1103/PhysRevLett.122.027001
  • Guthrie M, Boehler R, Molaison JJ, et al. Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization. Phys Rev B. 2019;99:184112. doi: 10.1103/PhysRevB.99.184112
  • Machida A, Saitoh H, Hattori T, et al. Hexagonal close-packed iron hydride behind the conventional phase diagram. Sci Rep. 2019;9:12290. doi: 10.1038/s41598-019-48817-7
  • Sano-Furukawa A, Hattori T, Komatsu K, et al. Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction. Sci Rep. 2018;8:15520. doi: 10.1038/s41598-018-33598-2
  • Klotz S. Techniques in high pressure neutron scattering. CRC Press, Taylor & Francis Group; 2012.
  • Klotz S, Casula M, Komatsu K, et al. High pressure structure and electronic properties of YbD2 to 34 GPa. Phys Rev B. 2019;100:020101. doi: 10.1103/PhysRevB.100.020101
  • Hattori T, Sano-Furukawa A, Machida S, et al. Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press. High Press Res. 2019;39:1–9. doi: 10.1080/08957959.2019.1624745
  • Boehler R, Guthrie M, Molaison JJ, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33:546–554. doi: 10.1080/08957959.2013.823197
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Sumiya H, Harano K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond Relat Mater. 2012;24:44–48. doi: 10.1016/j.diamond.2011.10.013
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J Mater Res. 2011;22:2345–2351. Epub 01/31. doi: 10.1557/jmr.2007.0295
  • Nakamoto Y, Sakata M, Sumiya H, et al. Note: high pressure generation using nano-polycrystalline diamonds as anvil materials. Rev Sci Instrum. 2011;82:066104. doi: 10.1063/1.3600794
  • Guthrie M, Pruteanu CG, Donnelly M-E, et al. Radiation attenuation by single-crystal diamond windows. J Appl Crystallogr. 2017;50:76–86. doi: 10.1107/S1600576716018185
  • Okuchi T, Sasaki S, Ohno Y, et al. Neutron powder diffraction of small-volume samples at high pressure using compact opposed-anvil cells and focused beam. J Phys Conf Ser. 2012;377:012013. doi: 10.1088/1742-6596/377/1/012013
  • Pawlus S, Klotz S, Paluch M. Effect of compression on the relationship between viscosity and dielectric relaxation time in hydrogen-bonded primary alcohols. Phys Rev Lett. 2013;110:173004. doi: 10.1103/PhysRevLett.110.173004
  • Takemura K, Sahu PC, Kunii Y, et al. Versatile gas-loading system for diamond-anvil cells. Rev Sci Instrum. 2001;72:3873–3876. doi: 10.1063/1.1396667
  • Couzinet B, Dahan N, Hamel G, et al. Optically monitored high pressure gas loading apparatus for diamond anvil cells. High Press Res. 2003;23:409–415. doi: 10.1080/0895795031000095847
  • Hattori T, Sano-Furukawa A, Arima H, et al. Design and performance of high pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl Instr, Meth Phys Res A. 2015;780:55–67. doi: 10.1016/j.nima.2015.01.059
  • Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research: Solid Earth. 1986;91:4673–4676. doi: 10.1029/JB091iB05p04673
  • Hemley RJ, Jephcoat AP, Mao HK, et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature. 1987;330:737–740. doi: 10.1038/330737a0
  • Wolanin E, Pruzan P, Chervin JC, et al. Equation of state of ice VII up to 106 GPa. Phys Rev B. 1997;56:5781–5785. doi: 10.1103/PhysRevB.56.5781
  • Somayazulu M, Shu JF, Zha CS, et al. In situ high pressure x-ray diffraction study of H2O ice VII. J Chem Phys. 2008;128:064510. doi: 10.1063/1.2813890
  • Yamashita K, Komatsu K, Klotz S, et al. A nano-polycrystalline diamond anvil cell with bulk metallic glass cylinder for single-crystal neutron diffraction. High Press Res. 2019;40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.