Publication Cover
High Pressure Research
An International Journal
Volume 40, 2020 - Issue 3
1,228
Views
4
CrossRef citations to date
0
Altmetric
Articles

Practical effects of pressure-transmitting media on neutron diffraction experiments using Paris–Edinburgh presses

, , , , , & show all
Pages 325-338 | Received 22 Apr 2020, Accepted 11 Jun 2020, Published online: 25 Jun 2020

References

  • Klotz S, Besson JM, Hamel G, et al. Neutron powder diffraction at pressure beyond 25 GPa. Appl Phys Lett. 1995;66:1735–1737. doi: 10.1063/1.113350
  • Boehler R, Guthrie M, Molaison J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33:546–554. doi: 10.1080/08957959.2013.823197
  • Hattori T, Sano-Furukawa A, Machida S, et al. Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press. High Press Res. 2019;39:417–425. doi: 10.1080/08957959.2019.1624745
  • Komatsu K, Stefan K, Nakano S, et al. Developments of nano-polycrystalline diamond anvil cells for neutron diffraction experiments. High Press Res. 2020;40:184–193. doi: 10.1080/08957959.2020.1727465
  • Guthrie M, Boehler R, Tulk CA, et al. Neutron diffraction observations of interstitial protons in dense ice. Proc Natl Acad Sci USA. 2013;110(26):10552–10556. doi: 10.1073/pnas.1309277110
  • Klotz S, Casula M, Komatsu K, et al. High-pressure structure and electronic properties of YbD2 to 34 GPa. Phys Rev B. 2019;100:020101(R). doi: 10.1103/PhysRevB.100.020101
  • Liebenberg DH. A new hydrostatic medium for diamond-anvil cells to 300 kbar pressure. Phys Lett. 1979;73A:74–76. doi: 10.1016/0375-9601(79)90754-0
  • Nicol M, Hirsch KR, Holzapfel WB. Oxygen phase equilibria near 298 K. Chem Phys Lett. 1979;68:49–52. doi: 10.1016/0009-2614(79)80066-4
  • Bell PM, Mao HK. Degree of hydrostaticity in He, Ne, and Ar pressure-transmitting media. Year Book. Carnegie Inst Washington. 1981;80:404–406.
  • Besson JM, Nelmes RJ, Hamel G, et al. Neutron powder diffraction above 10 GPa. Physica B Condens Matter. 1992;180-181:907–910. doi: 10.1016/0921-4526(92)90505-M
  • Klotz S. Techniques in high pressure neuron scattering. Boca Raton (FL): CRC Press -Taylor and Francis; 2013.
  • Klotz S, Chervin JC, Munsch P, et al. Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys. 2009;42:075413. doi: 10.1088/0022-3727/42/7/075413
  • Klotz S, Paumier L, Le Marchand G, et al. The effect of temperature on the hydrostatic limit of 4:1 methanol-ethanol under pressure. High Press Res. 2009;29:649–652. doi: 10.1080/08957950903418194
  • Klotz S, Takemura K, Strässle T, et al. Freezing of glycerol-water mixtures under pressure. J Phys Condens Matter. 2012;24:325103. doi: 10.1088/0953-8984/24/32/325103
  • Bull CL, Bocian A, Hamidov H, et al. Note: Achieving quasi-hydrostatic conditions in large-volume toroidal anvils for neutron scattering to pressures of 18 GPa. Rev Sci Instrum. 2011;82:076101. doi: 10.1063/1.3606643
  • Gieske JH, Barsch GR. Pressure dependence of the elastic constants of single crystalline aluminum oxide. Physica Status Solidi. 1968;29:121–131. doi: 10.1002/pssb.19680290113
  • Gladden JR, So JH, Maynard JD, et al. Reconciliation of ab initio theory and experimental elastic properties of Al2O3. Appl Phys Lett. 2004;85:392–394. doi: 10.1063/1.1773924
  • Burnett JH, Cheong HM, Paul W. The inert gases Ar, Xe, and He as cryogenic pressure media. Rev Sci Instrum. 1990;61:3904–3905. doi: 10.1063/1.1141520
  • Angel RJ, Bujak M, Zhao J, et al. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Cryst. 2007;40:26–32. doi: 10.1107/S0021889806045523
  • Elemets MI. High pressure experimental methods. New York: Oxford University Press; 1996.
  • Jackson I, Niesler H. The elasticity of periclase to 3 GPa and some geophysical implications. In: Akimoto S, Manghnani MH, editors. High pressure research in geophysics. Tokyo: Center for Academic Publications; 1982. p. 93–133.
  • Duffy TH, Ahrens TJ. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide. J Geophys Res. 1995;100:529–542. doi: 10.1029/94JB02065
  • Chopelas A. The fluorescence sideband method for obtaining acoustic velocities at high compressions: Application to MgO and MgAl2O4. Phys Chem Minerals. 1996;23:25–37. doi: 10.1007/BF00202990
  • Hattori T, Sano-Furukawa A, Arima H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl Instrum Methods Phys Res A. 2015;780:55–67. doi: 10.1016/j.nima.2015.01.059
  • Klotz S, Gauthier M, Besson JM, et al. Techniques for neutron diffraction on solidified gases to 10 GPa and above: Applications to ND3 phase IV. Appl Phys Lett. 1995;67:1188–1190. doi: 10.1063/1.115002
  • Jackson I. Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophys J Int. 1998;134:291–311. doi: 10.1046/j.1365-246x.1998.00560.x
  • Strässle T, Klotz S, Kunc K, et al. Equation of state of lead from high-pressure neutron diffraction up 8.9 GPa and its implication for NaCl pressure scale. Phys Rev B. 2014;90:014101. doi: 10.1103/PhysRevB.90.014101
  • Hull S, Keen DA. Pressure-induced phase transitions in AgCl AgBr, and AgI. Phys Rev B. 1999;59:750–761. doi: 10.1103/PhysRevB.59.750
  • Young DA, Zha CS, Boehler R, et al. Diatomic melting curves to very high pressure. Phys Rev B. 1987;35:5353–5356. doi: 10.1103/PhysRevB.35.5353
  • Hanfland M, Lorenzen M, Wassilew-Reul C, et al. Structures of molecular nitrogen at high pressures. Rev High Pressure Sci Technol. 1998;7:787–789. doi: 10.4131/jshpreview.7.787
  • Zha CS, Boehler R, Yong DA, et al. The argon melting curve to very high pressures. J Chem Phys. 1986;85:1034. doi: 10.1063/1.451295
  • Jephcoat AP. Rare-gas solids in the Earth’s deep interior. Nature(London). 1998;393:355–358. doi: 10.1038/30712
  • LeSar R, Ekberg SA, Jones LH, et al. Raman spectroscopy of solid nitrogen up to 374 kbar. Solid State Com. 1979;32:131–134. doi: 10.1016/0038-1098(79)91073-1
  • Klotz S, Besson JM, Hamel G. Pressure distribution in solid samples compressed by toroidal anvils. High Press Res. 2006;26:277–282. doi: 10.1080/08957950600869095
  • Iizuka R, Yagi T, Gotou H, et al. An opposed-anvil-type apparatus with an optical window and a wide-angle aperture for neutron diffraction. High Press Res. 2012;32:430–441. doi: 10.1080/08957959.2012.722213
  • Boehler R, Ross M, Söderlind P, et al. High-pressure melting curves of argon, krypton, and xenon: deviation from corresponding states theory. Phys Rev Lett. 2001;86:5731–5734. doi: 10.1103/PhysRevLett.86.5731
  • Reuss A. Berechnung der Fliessgrenze von Mischristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Math Mech. 1929;9:49–58. doi: 10.1002/zamm.19290090104
  • Voigt W. Ueber die Beziehung zwischen den beiden Elastizitätsconstanten isotroper Körper. Ann Physik. 1889;38:573–587. doi: 10.1002/andp.18892741206
  • Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids. 1963;11:357–372. doi: 10.1016/0022-5096(63)90036-X
  • Hashin Z, Shtrikman S. Avariational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids. 1963;11:127–140. doi: 10.1016/0022-5096(63)90060-7
  • Kimura T, Matsushima T, Ueda K, et al. Deuterium isotope effect on excess enthalpies and methanol or ethanol and their deuterium derivatives at 298.15 K. J Therm Anal Calorim. 2001;64:231–241. doi: 10.1023/A:1011553500435
  • Cuevara-Carrion G, Nieto-Draghi C, Vrabec J, et al. Prediction of transport properties by molecular simulation: methanol and ethanol and their mixture. J Phys Chem B. 2008;112:16664–16674. doi: 10.1021/jp805584d
  • Dianoux AJ, Lander G. Neutron data booklet. 2nd ed. Philadelphia (PA): Old City Publishing; 2003.