Publication Cover
High Pressure Research
An International Journal
Volume 41, 2021 - Issue 1
200
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pressure tolerance of brine shrimp (Artemia)

ORCID Icon, , &

References

  • Merino N, Aronson HS, Bojanova DP, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol. 2019;10:780. doi:10.3389/fmicb.2019.00780.
  • Lauro FM, Bartlett DH. Prokaryotic lifestyles in deep sea habitats. Extremophiles. 2008;12(1):15–25. doi:10.1007/s00792-006-0059-5.
  • Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161(10):799–809. doi:10.1016/j.resmic.2010.09.017.
  • Yancey PH, Gerringer ME, Drazen JC, et al. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl. Acad. Sci. U.S.A. 2014;111:4461–4465. doi:10.1073/pnas.1322003111.
  • Hazael R, Meersman F, Ono F, et al. Pressure as a limiting factor for life. Life 2016;634. doi:10.3390/life6030034.
  • Tamura K, Shimizu T, Kourai H. Effects of ethanol on the growth and elongation of Escherichia-coli under high-pressures up to 40 MPa. FEMS Microbiol. Lett. 1992;99:321–324. doi:10.1111/j.1574-6968.1992.tb05589.x.
  • Abe F, Horikoshi K. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 2000;20:8093–8102. doi:10.1128/Mcb.20.21.8093-8102.2000.
  • Iwahashi H, Odani M, Ishidou E, et al. Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett. 2005;579:2847–2852. doi:10.1016/j.febslet.2005.03.100.
  • Abe F, Minegishi H. Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics. 2008;178:851–872. doi:10.1534/genetics.107.083063.
  • Watanabe N, Morimatsu M, Fujita A, et al. Increased hydrostatic pressure induces nuclear translocation of DAF-16/FOXO in C. elegans. Biochem. Biophys. Res. Comm. 2020;523:853–858. doi:10.1016/j.bbrc.2020.01.047.
  • Yagi T, Nishiyama M. High hydrostatic pressure induces vigorous flagellar beating in Chlamydomonas non-motilemutants lacking the central apparatus. Sci. Rep. 2020;10:2072. doi:10.1038/s41598-020-58832-8.
  • Petrov E, Rohde PR, Macdonald AG, et al. Effect of high hydrostatic pressure and voltage on gating of the bacterial mechanosensitive channel of small conductance. Proceedding of the 4th International Conference on High Pressure Bioscience and Biotechnology. 2007;1:20–27.
  • Schnee S, Wegner F, Schürmann S, et al. Microdomain Ca2+ dynamics in mammalian muscle following prolonged high pressure treatments. J. Phys. Conference Series. 2008;121:112003. doi:10.1088/1742-6596/121/1/11200.
  • Akasaka K. Probing conformational fluctuation of proteins by pressure perturbation. Chem. Rev. 2006;106:1814–1835. doi:10.1021/cr040440z.
  • Ohmae E, Gekko K, Kato C. Environmental adaptation of dihydrofolate reductase from deep-sea bacteria. In Akasaka K, Matsuki H, Editors. High pressure bioscience: basic concepts, applications and frontiers. Japan: Springer; 2015. pp. 423–442. doi:10.1007/978-94-017-9918-8_21.
  • Matsuki H. How do membranes respond to pressure? In Akasaka K, Matsuki H, Editors. High pressure Bioscience: Basic Concepts, Applications and Frontiers. Japan: Springer; 2015. pp. 321–343. doi:10.1007/978-94-017-9918-8_16.
  • Williamson MP, Kitahara R. Characterization of low-lying excited states of proteins by high-pressure NMR. BBA-Proteins Proteom 2019;1867:350–358. doi:10.1016/j.bbapap.2018.10.014.
  • Winter R. Interrogating the structural dynamics and energetics of biomolecular systems with pressure modulation. Ann. Rev. Biophys. 2019;48:441–463. doi:10.1146/annurev-biophys-052118-115601.
  • Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015;527:64–69. doi:10.1038/nature15247.
  • Kitahara R, Oyama K, Kawamura T, et al. Pressure accelerates the circadian clock of cyanobacteria. Sci Rep. 2019;9:2395. doi:10.1038/s41598-019-48693-1.
  • Ono F, Saigusa M, Uozumi T, et al. Effect of high hydrostatic pressure on to life of the tiny animal tardigrade. J Phys Chem Solids. 2008;69:2297–2300. doi:10.1016/j.jpcs.2008.04.019.
  • Ono F, Minami K, Saigusa M, et al. Life of Artemia under very high pressure. J Phys Chem Solids. 2010;71:1127–1130. doi:10.1016/j.jpcs.2010.03.019.
  • Simon SA, Parmentier JL, Bennett PB. Anesthetic antagonism of the effects of high hydrostatic-pressure on locomotory activity of the brine shrimp Artemia. Comp. Biochem. Phys. A. 1983;75:193–199. doi:10.1016/0300-9629(83)90069-5.
  • Morris JP, Thatje S, Ravaux J, et al. Characterising multi-level effects of acute pressure exposure on a shallow-water invertebrate: insights into the kinetics and hierarchy of the stress response. J. Exp. Biol. 2015;218:2594–2602. doi:10.1242/jeb.125914.
  • Garcia CRS, Amaral JA, Abrahamsohn P, et al. Dissociation of F-actin induced by hydrostatic-pressure. Eur. J. Biochem. 1992;209:1005–1011. doi:10.1111/j.1432-1033.1992.tb17375.x.
  • Iwahashi H. Pressure-dependent gene activation in yeast cells. In Akasaka K, Matsuki H, Editors. High pressure bioscience: basic concepts, applications and frontiers. Japan: Springer; 2015. pp. 407–422. doi:10.1007/978-94-017-9918-8_20.
  • Sun Y, Bojikova-Fournier S, MacRae TH. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS J. 2006;273:1020–1034. doi:10.1111/j.1742-4658.2006.05129.x.
  • De Vos S, Van Stappen G, Sorgeloos P, et al. Identification of salt stress response genes using the Artemia transcriptome. Aquaculture. 2019;500:305–314. doi:10.1016/j.aquaculture.2018.09.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.