Publication Cover
High Pressure Research
An International Journal
Volume 41, 2021 - Issue 1
164
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental and theoretical P-V-T equation of state for Os2B3

, , , &
Pages 27-38 | Received 27 Sep 2020, Accepted 30 Nov 2020, Published online: 26 Dec 2020

References

  • Anzellini S, Dewaele A, Occelli F, et al. Equation of state of rhenium and application for ultra high pressure calibration. J Appl Phys. 2014;115:043511.
  • Rech GL, Zorzi JE, Perottoni CA. Equation of state of hexagonal-close-packed rhenium in the terapascal regime. Phys Rev B. 2019;100:174107.
  • Sakai T, Yagi T, Irifune T, et al. High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press Res. 2018;38:107–119.
  • Perreault CS, Velisavljevic N, Vohra YK. High-pressure structural parameters and equation of state of osmium to 207 GPa. Ahuja R, editor. Cogent Phys. 2017;4:1376899.
  • Friedrich A, et al. Synthesis of binary transition metal nitrides, carbides, and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations. Materials. 2011;4:1648–1692.
  • Burrage KC, Lin C-M, Chen W-C, et al. Electronic structure and anisotropic compression of Os2B3 to 358 GPa. J Phys: Condens Matter. 2020;32:405703.
  • Frotscher M, Senyshyn A, Albert B. Neutron diffraction at metal borides, Ru2B3 and Os2B3. ZAnorg Allg Chem. 2012;638:2078–2080.
  • Burrage KC, Lin C-M, Chen W-C, et al. Experimental and computational studies on superhard material rhenium diboride under ultrahigh pressures. Materials. 2020;13:1657.
  • Chung H-Y, Weinberger MB, Levine JB, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science. 2007;316:436–439.
  • Zhou W, Wu H, Yildirim T. Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study. Phys Rev B. 2007;76:184113.
  • Kono Y, Irifune T, Higo Y, et al. P-V-T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: A new pressure scale for the mantle transition region. Phys Earth Planet Inter. 2010;183:196–211.
  • Kono Y, Park C, Sakamaki T, et al. Simultaneous structure and elastic wave velocity measurement of SiO2 glass at high pressures and high temperatures in a Paris-Edinburgh cell. Rev Sci Instrum. 2012;83:033905.
  • Sturtevant M, Park C, Kono Y, et al. A broadband technique for couplant-corrected pulse echo measurements in a large volume pressure cell. 2018 IEEE International Ultrasonics Symposium; 2018.
  • Fei Y. Thermal expansion. Mineral Physics & Crystallography [Internet]. American Geophysical Union (AGU); 2013 [cited 2020 Sep 25]. p. 29–44. Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RF002p0029.
  • Hohenberg P, Kohn W. Inhomogeneous electron Gas. Phys Rev. 1964;136:B864–B871.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:1133–1138.
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1775.
  • Mattsson AE, Armiento R. A functional designed to include surface effects into self-consistent density-functional theory calculations. 2005;U32.010.
  • Mattsson E, Armiento R, Paier J, et al. The AM05 density functional applied to solids. J Chem Phys. 2008;128:084714.
  • Mattsson E, Armiento R. Implementing and testing the AM05 spin density functional. Phys Rev B. 2009;79:155101.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192.
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1.
  • Togo A, Chaput L, Tanaka I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Phys Rev B Cond Matter. 2010;81:174301.
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1–5.
  • Born M, Huang K. Dynamical theory of crystal lattices. 2nd ed. USA: Oxford University Press; Oxford, England 1988.
  • Ozisik H, Deligoz E, Surucu G, et al. Anisotropic elastic and vibrational properties of Ru2B3and Os2B3: a first-principles investigation. Mater Res Express. 2016;3:076501.
  • Gu Q, Krauss G, Steurer W. Transition metal borides: superhard versus ultra-incompressible. Adv Mater. 2008;20:3620–3626.
  • Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 1980;45:566.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Tran F, Stelzl J, Blaha P. Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys. 2016;144:204120.
  • Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;344:789–839.
  • Vočadlo L, Poirer JP, Price GD. Grüneisen parameters and isothermal equations of state. Am Mineral. 2000;85:390–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.