Publication Cover
High Pressure Research
An International Journal
Volume 41, 2021 - Issue 2
677
Views
1
CrossRef citations to date
0
Altmetric
Articles

Hydrostaticity in high pressure experiments: some general observations and guidelines for high pressure experimenters

Pages 155-174 | Received 01 Sep 2020, Accepted 11 Mar 2021, Published online: 24 Mar 2021

References

  • Piermarini GJ, Block S, Barnett JD. Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys. 1973;44:5377–5382.
  • Reimann K, Syassen K. Raman scattering and photoluminescence in Cu2O under hydrostatic pressure. Phys Rev B. 1989;39:11113–11119.
  • Blacha A, Ves S, Cardona M. Effects of uniaxial strain on the exciton spectra of CuCl, CuBr, and CuI. Phys Rev B. 1983;27:6346–6362.
  • Von Bargen N, Boehler R. Effect of non-hydrostaticity on the α-ϵ transition of iron. High Press Res. 1990;6:133–140.
  • Wu TC, Bassett WA, Burnley PC, et al. Shear-promoted phase transitions in Fe2SiO4 and Mg2SiO4 and the mechanism of deep earthquakes. J Geophys Res. 1993;98:19767–19776.
  • Libotte H, Gaspard J-P. Pressure-induced distortion of the β-Sn phase of silicon: Effects of nonhydrostaticity. Phys Rev B. 2000;62:7110–7115.
  • Wang X, Zhang X, Loa I, et al. Structural properties, infrared reflectivity, and Raman modes of SnO at high pressure. Phys Stat Sol (b). 2004;241:3168–3178.
  • Goñi AR, Zhou T, Schwarz U, et al. Pressure-temperature phase diagram of the spin-Peierls compound CuGeO3. Phys Rev Lett. 1996;77:1079–1082.
  • Gillet P, Badro J, Varrel B, et al. High-pressure behavior in α-AlPO4: Amorphization and the memory-glass effect. Phys Rev B. 1995;51:11262–11269.
  • Haines J, Léger JM, Gorelli F, et al. Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett. 2001;87:155503.
  • Machon D, Dmitriev VP, Bouvier P, et al. Pseudoamorphization of Cs2HgBr4. Phys Rev B. 2003;68:144104.
  • Yan XQ, Tang Z, Zhang L, et al. Depressurization amorphization of single-crystal boron carbide. Phys Rev Lett. 2009;102:075505.
  • Deemyad S, Tomita T, Hamlin JJ, et al. Dependence of the superconducting transition temperature of single and polycrystalline MgB2 on hydrostatic pressure. Physica C. 2003;385:105–116.
  • Yu W, Aczel AA, Williams TJ, et al. Absence of superconductivity in single-phase CaFe2As2 under hydrostatic pressure. Phys Rev B. 2009;79:020511.
  • Akahama Y, Hirao N, Ohishi Y, et al. Equation of state of bcc-Mo by static volume compression to 410 GPa. J Appl Phys. 2014;116:223504.
  • Chai M, Brown JM. Effects of static non-hydrostatic stress on the R lines of ruby single crystals. Geophys Res Lett. 1996;23:3539–3542.
  • Takemura K, Singh AK. High-pressure equation of state for Nb with a helium-pressure medium: Powder x-ray diffraction experiments. Phys Rev B. 2006;73:224119.
  • Fujishiro I, Piermarini GJ, Block S, et al. Viscosities and glass transition pressures in the methanol-ethanol-water system. In: Backman CM, Johannisson T, Tegner L, editors. Proceedings of the 8th AIRAPT conference Uppsala; Uppsala; 1982. Vol. II, p. 608.
  • Jayaraman A. Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys. 1983;55:65–108.
  • Angel RJ, Bujak M, Zhao J, et al. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Cryst. 2007;40:26–32.
  • Klotz S, Chervin J-C, Munsch P, et al. Hydrostatic limits of 11 pressure transmitting media. J Phys D: Appl Phys. 2009;42:075413.
  • Singh AK, Balashingh C, Mao H-K, et al. Analysis of lattice strains measured under nonhydrostatic pressure. J Appl Phys. 1998;83:7567–7575.
  • Takemura K. The zinc story under high pressure. J Miner Mater Charact Eng. 2019;7:354–372.
  • Takemura K. Zn under pressure: A singularity in the hcp structure at c/a = √3. Phys Rev Lett. 1995;75:1807–1810.
  • Takemura K. Structural study of Zn and Cd to ultrahigh pressures. Phys Rev B. 1997;56:5170–5179.
  • Takemura K. Absence of the c/a anomaly in Zn under high pressure with a helium-pressure medium. Phys Rev B. 1999;60:6171–6174.
  • Liu H, Hu J, Shu J, et al. Lack of the critical pressure for weakening of size-induced stiffness in 3C-SiC nanocrystals under hydrostatic compression. Appl Phys Lett. 2004;85:1973–1975.
  • Takemura K. Bulk modulus of osmium: High-pressure powder x-ray diffraction experiments under quasihydrostatic conditions. Phys Rev B. 2004;70:012101.
  • Decker DL, Bassett WA, Merrill L, et al. High-pressure calibration: A critical review. J Phys Chem Ref Data. 1972;1:773–835.
  • Takemura K. Pressure scales and hydrostaticity. High Press Res. 2007;27:465–472.
  • Nye JF. Physical properties of crystals: Their representation by tensors and matrices. Oxford: Clarendon Press; 1957.
  • Liebermann RC, Li B. Elasticity at high pressures and temperatures. In: Hemley RJ, editor. Ultrahigh pressure mineralogy: physics and chemistry of the earth's deep interior. Washington, DC: Mineralogical Society of America; 1998. p. 459–492.
  • Means MD. Stress and strain: Basic concepts of continuum mechanics for geologists. New York (NY): Springer; 1976.
  • Syassen K. Ruby under pressure. High Press Res. 2008;28:75–126.
  • Otto JW, Vassiliou JK, Frommeyer G. Nonhydrostatic compression of elastically anisotropic polycrystals. I. Hydrostatic limits of 4:1 methanol-ethanol and paraffin oil. Phys Rev B. 1998;57:3253–3263.
  • Barnett JD, Bosco CD. Viscosity measurements on liquids to pressures of 60 kbar. J Appl Phys. 1969;40:3144–3150.
  • Gregoryanz E, Degtyareva O, Somayazulu M, et al. Melting of dense sodium. Phys Rev Lett. 2005;94:185502.
  • Besson JM, Pinceaux JP. Melting of helium at room temperature and high pressure. Science. 1979;206:1073–1075.
  • Loubeyre P, Besson JM, Pinceaux JP, et al. High-pressure melting curve of 4He. Phys Rev Lett. 1982;49:1172–1175.
  • Vos WL, van Hinsberg MGE, Schouten JA. High-pressure triple point in helium: The melting line of helium up to 240 kbar. Phys Rev B. 1990;42:6106–6109.
  • Datchi F, Loubeyre P, LeToullec R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys Rev B. 2000;61:6535–6546.
  • Sidorov VA, Sadykov RA. Hydrostatic limits of Fluorinert liquids used for neutron and transport studies at high pressure. J Phys: Condens Matter. 2005;17:S3005–S3008.
  • Stasko D, Prchal J, Klicpera M, et al. Pressure media for high pressure experiments, Daphne oil 7000 series. High Press Res. 2020;40:525–536.
  • Klement Jr W, Jayaraman A, Kennedy GC. Transformations in mercury at high pressures. Phys Rev. 1963;131:1–6.
  • Takemura K, Dewaele A. Isothermal equation of state for gold with a He-pressure medium. Phys Rev B. 2008;78:104119.
  • Meng Y, Weidner DJ, Fei Y. Deviatoric stress in a quasi-hydrostatic diamond anvil cell: Effect on the volume-based pressure calibration. Geophys Res Lett. 1993;20:1147–1150.
  • Dewaele A, Loubeyre P. Pressurizing conditions in helium-pressure-transmitting medium. High Press Res. 2007;27:419–429.
  • Sing AK, Takemura K. Negative differential stresses in niobium: Analysis of x-ray measured pressure-volume data. J Appl Phys. 2020;128:075901.
  • Mao H-K, Badro J, Shu J, et al. Strength, anisotropy, and preferred orientation of solid argon at high pressures. J Phys: Condens Matter. 2006;18:S963–S968.
  • Duffy TS, Shen G, Heinz DL, et al. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa. Phys Rev B. 1999;60:15063–15073.
  • Takemura K, Watanuki T, Ohwada K, et al. Powder x-ray diffraction study of Ne up to 240 GPa. J Phys: Conf Ser. 2010;215:012017.
  • Singh AK. Strength of solid helium under high pressure. J Phys: Conf Ser. 2012;377:012007.
  • Chen B, Gleason AE, Yan JY, et al. Elasticity, strength, and refractive index of argon at high pressures. Phys Rev B. 2010;81:144110.
  • Singh AK, Liermann H-P. Strength and elasticity of niobium under high pressure. J Appl Phys. 2011;109:113539.
  • Zha C-S, Mao H-K, Hemley RJ. Elasticity of dense helium. Phys Rev B. 2004;70:174107.
  • Bell PM, Mao HK. Degrees of hydrostaticity in He, Ne, and Ar pressure-transmitting media. Carnegie Inst Washington Yearbook. 1981;80:404–406.
  • Sherman WF, Stadtmuller AA. Experimental techniques in high-pressure research. Chichester: John Wiley & Sons; 1987. p. 128–188.
  • Burnett JH, Cheong HM, Paul W. The inert gases Ar, Xe, and He as cryogenic pressure media. Rev Sci Instrum. 1990;61:3904–3905.
  • Eremets MI. High pressure experimental methods. Oxford: Oxford University Press; 1996.
  • Takemura K. Evaluation of the hydrostaticity of a helium-pressure medium with powder x-ray diffraction techniques. J Appl Phys. 2001;89:662–668.
  • Varga T, Wilkinson AP, Angel RJ. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies. Rev Sci Instrum. 2003;74:4564–4566.
  • Osakabe T, Kakurai K. Feasibility tests on pressure-transmitting media for single-crystal magnetic neutron diffraction under high pressure. Jap J Appl Phys. 2008;47:6544–6547.
  • Tateiwa N, Haga Y. Evaluation of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev Sci Instrum. 2009;80:123901.
  • Feng Y, Jaramillo R, Wang J, et al. High-pressure techniques for condensed matter physics at low temperature. Rev Sci Instrum. 2010;81:041301.
  • Klotz S, Takemura K, Strässle Th, et al. Freezing of glycerol-water mixtures under pressure. J Phys: Condens Matter. 2012;24:325103.
  • Weck G, Loubeyre P, LeToullec R. Observation of structural transformations in metal oxygen. Phys Rev Lett. 2002;88:035504.
  • Farber DL, Antonangeli D, Aracne CM, et al. Preparation and characterization of single crystal samples for high-pressure experiments. High Press Res. 2006;26:1–10.
  • Guennou M, Bouvier P, Krikler B, et al. High-pressure investigation of CaTiO3 up to 60 GPa using x-ray diffraction and Raman spectroscopy. Phys Rev B. 2010;82:134101.
  • Aleksandrov IV, Goncharov AF, Zisman AN, et al. Diamond at high pressures: Raman scattering of light, equation of state, and high-pressure scale. Sov Phys JETP. 1987;66:384–390.
  • Zhang L, Ahsbahs H, Kutoglu A. Hydrostatic compression and crystal structure of pyrope to 33 GPa. Phys Chem Minerals. 1998;25:301–307.
  • Mao HK, Hemley RJ, Wu Y, et al. High-pressure phase diagram and equation of state of solid helium from single-crystal x-ray diffraction to 23.3 GPa. Phys Rev Lett. 1988;60:2649–2652.
  • Downs RT, Zha C-S, Duffy TS, et al. The equation of state of forsterite to 17.2 GPa and effects of pressure media. Am Mineral. 1996;81:51–55.
  • Crawford RK, Daniels WB. Experimental determination of the P-T melting curves of Kr, Ne, and He. J Chem Phys. 1971;55:5651–5656.
  • Finger LW, Hazen RM, Zou G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature. Appl Phys Lett. 1981;39:892–894.
  • Vos WL, Schouten JA, Young DA, et al. The melting curve of neon at high pressure. J Chem Phys. 1991;94:3835–3838.
  • Michels A, Prins C. The melting lines of argon, krypton and xenon up to 1500 atm; Presentation of the results by a law of corresponding states. Physica. 1962;28:101–116.
  • Grace JD, Kennedy GC. The melting curve of five gases to 30 kb. J Phys Chem Solids. 1967;28:977–982.
  • Hardy WH, Crawford RK, Daniels WB. Experimental determination of the P-T melting curve of argon. J Chem Phys. 1971;54:1005–1010.
  • Liebenberg DH, Mills RJ, Bronson JC. High-pressure apparatus for simultaneous adiabatic and isothermal compressibility measurements: Data on argon to 13 kbar. J Appl Phys. 1974;45:741–747.
  • Crawford RK, Lewis WF, Daniels WB. Thermodynamics of solid argon at high temperatures. J Phys C: Solid State Phys. 1976;9:1381–1404.
  • Grimsditch M, Loubeyre P, Polian A. Brillouin scattering and three-body forces in argon at high pressures. Phys Rev B. 1986;33:7192–7200.
  • Stryland JC, Crawford JE, Mastoor MA. Melting temperatures of krypton, xenon, and methane at pressures up to 3000 atm. Can J Phys. 1960;38:1546–1547.
  • Crawford RK. Melting, vaporization and sublimation. In: Klein ML, Venables JA, editor. Rare gas solids. Vol. II. London: Academic Press; 1976. p. 686.
  • Polian A, Besson JM, Grimsditch M, et al. Solid krypton: Equation of state and elastic properties. Phys Rev B. 1989;39:1332–1336.
  • Shimizu H, Saitoh N, Sasaki S. High-pressure elastic properties of liquid and solid krypton to 8 GPa. Phys Rev B. 1998;57:230–233.
  • Errandonea D, Schwager B, Boehler R, et al. Phase behavior of krypton and xenon to 50 GPa. Phys Rev B. 2002;65:214110.
  • Asaumi K, Ruoff AL. Nature of the state of stress produced by xenon and some alkali halides when used as pressure media. Phys Rev B. 1986;33:5633–5636.
  • Liebenberg DH. A new hydrostatic medium for diamond anvil cells to 300 kbar pressure. Phys Lett. 1979;73A:74–76.
  • Mao HK, Bell PM. Observation of hydrogen at room temperature (25°C) and high pressure (to 500 kilobars). Science. 1979;203:1004–1006.
  • Diatschenko V, Chu CW, Liebenberg DH, et al. Melting curves of molecular hydrogen and molecular deuterium under high pressures between 20 and 373 K. Phys Rev B. 1985;32:381–389.
  • Hazen RM, Mao HK, Finger LW, et al. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys Rev B. 1987;36:3944–3947.
  • Mao HK, Bell PM. Design of the diamond-window, high-pressure apparatus for cryogenic experiments. Carnegie Inst Washington Yearbook. 1978-1979;78:659–663.
  • Mills RL, Liebenberg DH, Bronson JC. Melting properties and ultrasonic velocity of nitrogen to 20 kbar. J Chem Phys. 1975;63:4026–4031.
  • Young DA, Zha C-S, Boehler R, et al. Diatomic melting curves to very high pressure. Phys Rev B. 1987;35:5353–5356.
  • Zinn AS, Schiferl D, Nicol MF. Raman spectroscopy and melting of nitrogen between 290 and 900 K and 2.3 and 18 GPa. J Chem Phys. 1987;87:1267–1271.
  • Vos WL, Schouten JA. Improved phase diagram of nitrogen up to 85 kbar. J Chem Phys. 1989;91:6302–6305.
  • Le Sar R, Ekberg SA, Jones LH, et al. Raman spectroscopy of solid nitrogen up to 374 kbar. Solid State Commun. 1979;32:131–134.
  • Hattori T, Sano-Furukawa A, Machida S, et al. Practical effects of pressure-transmitting media on neutron diffraction experiments using Paris-Edinburgh presses. High Press Res. 2020;40:325–338.
  • Bassett WA. Deviatoric stress: a nuisance or a gold mine? J Phys: Condens Matter. 2006;18:S921–S931.
  • Durham WB, Weidner DJ, Karato S, et al. New developments in deformation experiments at high pressure. Rev Mineral Geochem. 2002;51:21–49.
  • Besson JM, Pinceaux JP. Uniform stress conditions in the diamond anvil cell at 200 kilobars. Rev Sci Instrum. 1979;50:541–543.
  • Singh AK, Liermann HP, Akahama Y, et al. Aluminum as a pressure-transmitting medium cum pressure standard for x-ray diffraction experiments to 200 GPa with diamond anvil cells. J Appl Phys. 2007;101:123526.
  • Brazhkin VV, Lyapin AG. The inversion of relative shear rigidity in different material classes at megabar pressures. J Phys: Condens Matter. 2002;14:10861–10867.
  • Hanfland M, Loa I, Syassen K. Sodium under pressure: bcc to fcc structural transition and pressure-volume relation to 100 GPa. Phys Rev B. 2002;65:184109.
  • Sata N, Shen G, Rivers ML, et al. Pressure-volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B. 2002;65:104114.
  • Uts I, Glazyrin K, Lee KKM. Effect of laser annealing of pressure gradients in a diamond-anvil cell using common solid pressure media. Rev Sci Instrum. 2013;84:103904.
  • Towle LC. Empirical relationship between shear strength, pressure and temperature. Appl Phys Lett. 1967;10:317–320.
  • Klotz S, Paumier L, Le Marchand G, et al. The effect of temperature on the hydrostatic limit of 4:1 methanol-ethanol under pressure. High Press Res. 2009;29:649–652.
  • Schirber JE. The solid helium pressure generation technique. Cryogenics. 1970;10:418–422.
  • Goree WS, Scott TA. Pressure dependence of electrical conductivity of metals at low temperatures. J Phys Chem Solids. 1966;27:835–848.
  • Reimann K. Two- and three-photon spectroscopy of solids under high pressure. High Press Res. 1996;15:73–93.
  • Takemura K, Yamawaki H, Fujihisa H, et al. High-pressure powder x-ray diffraction experiments on Zn at low temperature. J Phys: Condens Matter. 2002;14:10563–10568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.